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Summary

Extensive correlations of computer-code results

with experimental data are employed to illustrate

the use of linearized-theory, attached-flow methods

for the estimation and optimization of the aero-

dynamic performance of simple hinged-flap systems.

Use of attached-flow methods is based on the premise

that high levels of aerodynamic efficiency require

a flow that is as nearly attached as circumstances

permit. This study covers a variety of swept-wing

configurations ranging from fighters to supersonic

transports, all with leading- and trailing-edge flaps
for enhancement of subsonic aerodynamic efficiency.

The results indicate that linearized-theory, attached-

flow, computer-code methods (modified to include

estimated attainable leading-edge thrust and an ap-

proximate representation of vortex forces) provide a
rational basis for the estimation and optimization

of flap-system aerodynamic performance at subsonic

speeds. The analysis also indicates that "vortex-flap"
design is not an opposing approach but is closely re-

lated to attached-flow design concepts. The success-

ful vortex-flap design actually suppresses the forma-

tion of detached vortices to produce a small vortex

which is restricted almost entirely to the leading-edge

flap itself.

Introduction

This paper is intended to illustrate the use of

two linearized-theory, attached-flow computer codes

for the estimation and optimization of the subsonic

aerodynamic performance of thin wings with simple

hinged-flap systems. A previous study (ref. 1) pro-

vided an indication of the applicability of the com-

puter methods for a few selected examples. Using the
same two methods with some modifications for im-

proved accuracy and increased capability, the present
investigation treats a much broader spectrum of wing

planforms, flap-system geometries, and test condi-

tions to provide an extensive evaluation of the design

and analysis concepts.
The application of linearized-theory, attached-

flow methods to flap-system design and analysis is

based on the premise that high levels of aerodynamic

performance require a flow that is as nearly attached
as circumstances allow. Simple hinged leading-edge

flaps with sharp leading edges prevent the attainment
of attached flow because of the separation that occurs

at either the leading edge or the hinge line. However,

the selection of flap geometry to provide a reasonable

division of flow turning between that which occurs at

the leading edge and that which occurs at the hinge

line helps minimize the overall extent of flow sepa-
ration. Also, the use of trailing-edge flap deflection

to reduce the wing angle of attack for a given lift
serves to reduce the necessary flow turning over the

forward portion of the wing and further aids in the

goal of providing an approach to attached flow.
Reference 2 illustrates how an attached-flow wing-

design method (ref. 3) can be used in the selection
of candidate flap systems to approximate attached-

flow surfaces and loadings and how an attached-flow

flap-system evaluation method (ref. 4) can be used

to estimate achievable performance levels. In the

present paper, extensive correlations of theoretical

and experimental results are used to illustrate the

good agreement for flap settings which result in

good performance. The study also shows, in some

detail, the variation of optimum leading-edge and

trailing-edge flap deflections with lift coefficient as

well as the ability of attached-flow methods to predict

these settings and the resultant performance levels.

Examples of the applicability of wing-design code
results to the selection of efficient flap systems are

also given where appropriate.

Symbols

AR

b

CA

CD

ACD

CD,O

CL

CL,des

C L,c_

Cm

Cm,des

aspect ratio, b2/S

span, in.

axial- or chord-force coefficient

drag coefficient

drag coefficient due to lift,

CD - CD,O

drag coefficient at _ = 0° for a

wing with no camber or twist

lift coefficient

design lift coefficient

lift curve slope at _ = 0°,

per deg

pitching-moment coefficient

design pitching-moment
coefficient

CN

Acp

C

CL

CT

normal-force coefficient

lifting-pressure coefficient

local chord, in.

mean aerodynamic chord, in.

chord of leading-edge flap or

leading-edge design area, in.

root chord, chord at y = 0, in.



CT

M

R

r

S

&

.T I

Xh

o_

C_des

O:zt

Ao_ ft

_L,s

_T,n

_r,s

chord of trailing-edge flap or
trailing-edge design area, in.

Mach number

Reynolds number based on

mean aerodynamic chord

leading-edge radius, in.

reference area, in 2

suction parameter,

CL tan(CL/CL,c_) -- AC D

C L tan(CL/CL,a) - C_/(7rAR)

section thickness, in.

Cartesian coordinates, positive

aft, right, and up, respectively

distance in x-direction mea-

sured from leading edge, in.

distance from wing leading
edge to flap hinge line, in.

angle of attack, deg

angle of attack corresponding

to design lift coefficient

angle of attack for zero thrust

range of angle of attack for full
thrust

leading-edge flap deflection

angle measured normal to

hinge line, positive with

leading edge down (segmented

flap deflection specified as

inboard/outboard), deg

leading-edge flap streamwise

deflection angle, positive with

leading edge down (segmented

flap deflection specified as

inboard/outboard), deg

trailing-edge flap deflection

angle measured normal to

hinge line, positive with

trailing edge down (segmented

flap deflection specified as

inboard/outboard), deg

trailing-edge flap streamwise

deflection angle, positive with

trailing edge down (segmented

flap deflection specified as

inboard/outboard), deg

location of section maximum

thickness as a fraction of chord

Ah,L leading-edge flap hinge-line

sweep angle, deg

Ah,T trailing-edge flap hinge-line

sweep angle, deg

Fundamental Flap Performance
Considerations

If it were possible for thin wings to achieve at-

tached flow and develop the full theoretical leading-

edge thrust, high levels of aerodynamic efficiency

could be achieved without the use of flaps of any

type. As depicted in sketch A, a thin flat wing could,

if the flow remained attached to the surface, develop

a lifting-pressure distribution with very high suction

pressures in the vicinity of the leading edge (a singu-

larity in the case of a flat section with no thickness).
The high pressures acting on the nose of the wing
section produce a leading-edge thrust which counter-

acts a large portion of the drag distributed over the

remainder of the section. For two-dimensional flow,
the counteraction is complete, and theoretically the

drag disappears. Even for a flat section with no thick-

ness, thrust is theoretically developed. In the limit,

as the thickness approaches zero, the integral of the
pressure acting on the projected frontal area tends to
remain constant.

aCp _.

X _

Sketch A

However, in the real flow there are severe limita-

tions on the levels of suction pressures that can be

achieved. Reference 5 presents a study of the factors

limiting the achievement of full theoretical leading-

edge thrust and provides a means of estimating at-

tainable leading-edge thrust. When the high suction
pressures associated with attached flow cannot be

achieved, the flow tends to separate from the surface,

and flow patterns and pressure distributions such as

those shown in sketch B may result. The hatching



representsa separated-flowregionwith an embed-
dedcirculation. Althoughthe actualleading-edge
thrust maydisappear,theforceassociatedwith the
singularityisnot lost,butaccordingto thePolhamus
analogy(ref. 6) is redistributedto appearasa nor-
mal force insteadof a thrust force. Becausethe
gain in normalforcecannotcompensatefor the loss
in thrust, theaerodynamicefficiencybecomesmuch
poorer.

X I

Sketch B

As shown in sketch C, use of a leading-edge flap

can make the problem less severe. The theoretical
attached-flow lifting pressures in the vicinity of the

leading edge are much reduced. The one singularity

at the leading edge is replaced by two singularities,

one of lesser strength than the original at the lead-

ing edge and a second at the flap hinge line. Thus,

a distributed thrust force replaces the concentrated
leading-edge thrust of the flat wing. For the proper

deflection angle, pressures in the vicinity of the two

singularities can be made comparable. This distrib-

uted lifting pressure acting on the frontal projected

area of the flap produces a theoretical thrust force ap-

proaching that of the concentrated leading-edge sin-

gularity of the flat wing. Because of the generally re-

duced pressures required to produce nearly the same

level of theoretical thrust, that thrust is much more

likely to be achieved or approached in the real flow.
Within limits, the required pressure levels for the

achievement of a distributed thrust nearly equivalent

to that of the flat-wing singularity can be controlled

by selection of the flap chords and deflections. Even

with flow separation, the thrust force is preserved if

reattachment takes place at or ahead of the hinge

line and if no hinge-line separation occurs. This phe-
nomenon is discussed in more detail in reference 1.

A trailing-edge flap can also be used to improve

real-flow wing performance. As shown in sketch D,

a deflected trailing-edge flap can increase the wing

loading so that the required lift can be generated at

X °

Sketch C

a lower angle of attack. This in turn reduces the re-

quired loading and singularity strength at the leading

edge and thus decreases the chance of separation in

the real flow. In a sense, the trailing-edge flap causes
the remainder of the wing section to act as a large-

chord leading-edge flap.

X'

Sketch D

As shown in sketch E, the effects of leading-edge

and trailing-edge flaps can be combined to further re-

duce the theoretical pressure peaks and decrease the
chances for real-flow separation. Now there are three

singularities associated with the turning of the flow,

and, for properly selected deflection angles, pressures

in the vicinity of singularities can be made to be of

comparable strength. Possibilities for attached flow
are further enhanced by a small leading-edge radius

and an effective radius at the hinge lines (created

in part by the boundary layer). As discussed previ-

ously, even with flow separation at the leading edge,

good performance of the leading-edge flap may be re-

tained if the separation is sufficiently localized. Such

flow patterns are termed "predominantly attached"
and are discussed in detail in references 1 and 2. As

discussed in those references and subsequently in this

paper, flow separation over the trailing-edge flap area

only is not likely to be nearly as detrimental as sep-
aration at the wing leading edge.

An extension of the preceding arguments for the

use of leading- and trailing-edge flaps would lead to
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Sketch E

multisegmented flaps fore and aft and an approach

to the continuously curved camber surface illustrated

in sketch F. Such a surface, which may be derived

from a wing-design method such as that discussed in

reference 7_ provides for the complete elimination of

singularities and an approach to a uniform pressure

distribution which should maximize the possibilities
for a fully attached flow. Therefore, it is reasonable

to use such a wing-design solution as a guide in the se-

lection of flap chords and deflections to approximate

that surface, its loading, and its aerodynamic perfor-

mance. This approach is explored at some length in
reference 2.

ACp
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Sketch F

Analysis of Flap-System Performance

The comparisons of theory and experiment used

in this paper to explore the applicability of linearized-
theory, attached-flow methods to the analysis of flap-

system data are restricted to force and pitching-
moment data. This is believed to be sufficient

because the simple nature of the surface slope dis-

tribution for most of the wings of this study and

the analysis of the data through the use of axial-

and normal-force coefficients allow a piece-by-piece

study of the factors contributing to aerodynamic

performance.

Data from a variety of experimental programs

have been used in this analysis. Wing leading-edge

sweep angles vary from 44 ° to 74 °. Mach numbers

from 0.3 to 0.8 are considered, and Reynolds numbers

(based on _) range from 1.9 to 4.8 × 106 . The

source of the data, the test conditions, and sketches

of the wing-body planforms are given in each of the
correlation figures.

The pair of computer codes used in this study

provide a capability for the design of optimized wing-
camber surfaces and the evaluation of the subsonic

aerodynamic performance of wings which may em-

ploy leading- and trailing-edge flaps. These codes,

which are described in detail in appendixes A and

B, are improved versions of the codes used in the

study of reference 1. As described in the appendixes,

the modifications improve numerical accuracy and

provide additional capabilities. Notes on application

of the codes to the specific configurations and test

conditions included in this study are given in appen-

dix C. Sample code input data for the configurations
studied are given in tables I and II.

Throughout the present report, an attached-flow

computer-code solution that includes no leading-edge

thrust forces and no separated leading-edge vor-

tex forces is shown by the short-dash line. Code-

estimated forces, which include attainable thrust and

the effects of a separated vortex whose strength is

determined by the Polhamus leading-edge suction

analogy (ref. 6) and whose location is given by delta-

wing empirical data (ref. 4), are shown by the long-
dash-short-dash line. For reference, drag upper and
lower bounds are also shown. The theoretical lower

bound [CD, 0 + C_/(TrAR)] is the drag for a wing

with an elliptical span load distribution. A theo-

retical upper bound shown on the figures [CD, 0 +

C L tan(CL/CL,a) ] is the drag for a flat wing with
no leading-edge thrust and no vortex forces. The

zero-lift drag for a flat wing CD, 0 was obtained from
experimental data.

Cranked-Wing Fighter

Reference 8 provides subsonic maneuver perfor-

mance data for a cranked-wing supersonic fighter

configuration that is well suited to the purposes of

this study. Data presented in figure 1 were obtained

for a matrix of leading- and trailing-edge flap deflec-
tion angles so that maximum suction parameters and

optimum flap settings can be ascertained and com-

pared with theoretical predictions. The wind-tunnel

tests were conducted in the Langley 7- by 10-Foot

High-Speed Tunnel at Mach numbers of 0.3, 0.5, and

0.7. The experimental-theoretical correlations pre-

sented in the report are for data gathered at a Mach
number of 0.5 and a Reynolds number of 2.9 × 106.

Figure 1 provides data for the longitudinal aero-
dynamic characteristics of a flap system with



leading-edgeflapdeflectionsof 0°, 15°, and30° and
trailing-edgeflapdeflectionsof 0°, l0°, and20° inall
possiblecombinations.Thedatain figurel(a) forun-
deflectedflapsshowthe presenceof asmallamount
of actualleading-edgethrust. This canbe seenin
thenonlinearbehaviorof theaxial-forceplot. In the
completeabsenceof leading-edgethrust, the axial
forcefor a flat wing (no twist or camber)suchas
this wouldbeessentiallyconstantovertheangle-of-
attackrange.A smallleading-edgeradius,however,
permitstheachievementofsomeportionof thetheo-
reticalthrust,anamountwellpredictedby thecode
results. SketchG helpsto showthe relativevalue
of the thrust actuallyachieved,aspredictedby the
code,bycomparingit with thefull theoreticalthrust
(alsogivenby the code).Up to an angleof about
30, thefull amountof theoreticalthrust is achieved.
Beyondthispoint,astheangleofattackisincreased,
decreasingpercentagesof the full theoreticalthrust
are realized.At the statedmaneuverlift coefficient
of 0.7,whichforthis flat wingcorrespondsto anan-
gle of attackof about 14°, only a little morethan
10percentof theoreticalleading-edgethrust isactu-
ally achieved.As predictedby the Polhamusanal-
ogy (ref. 6), whichhasbeenincorporatedinto the
code,the remainderof the thrust is not lost, but
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Sketch G

reappears as a normal rather than an axial force. As

shown in the normal-force plot, the theoretical data
with the estimated vortex-force increment included

somewhat overestimate the measured normal force.
The loss of most of the theoretical thrust and the

substitution of the less efficient vortex-force result

in a wing lifting efficiency only slightly better than

that of a theoretical flat wing with no thrust and no

vortex forces [CD, 0 + e L tan(eL�eL,a)], as shown
in the lift-drag plot. The measured drag coefficients

are somewhat larger than the theoretically predicted

values (the curve with attainable thrust and vortex-

force contributions) and are much larger than those

of a wing with an elliptical span load distribution

[Co, 0 4- C_/(TrAR)]. There is clearly a need for
leading- and trailing-edge flaps to improve the wing

performance.

Figures l(a) to l(c) form a series in which leading-
edge flap deflection varies while the trailing-edge flap

remains undeflected. The axial-force plots show the

typical near-linear variation with angle of attack for

flaps with thin sections and little or no leading-edge

radius. Sketch H shows superimposed the theoret-

ically predicted variation of C A with a for three
leading-edge flap deflections and an envelope curve

for all possible deflections. This leading-edge flap
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Sketch H

family, even though not optimized, provides a rea-
sonable fraction of the full theoretical thrust bene-

fits by substitution of a distributed thrust force for

the concentrated full theoretical leading-edge force

of the flat wing. As shown in these three figures,
there is also a small reduction of normal force with

increases in leading-edge flap deflection. However,

this detrimental effect is far outweighed by the ben-

efits of the reduction of axial force. Generally, the

code provides a reasonable prediction of both axial
and normal forces. There is, however, an indication

of a more than moderate leading-edge flow separa-

tion (not confined to the flap itself) which prevents
full achievement of code-indicated axial-force bene-

fits beyond about a = 10 ° or C L = 0.5 for the 15 °

deflection. For the 30 ° deflection, there may be a

hinge-line separation beginning near a = 5°, followed

by a more general and extensive leading-edge sepa-

ration at larger angles of attack. There is also evi-
dence of a lower surface leading-edge flow separation

in the low angle-of-attack region. The nature of these

flow separations is discussed more fully in references 1

and 2. The code predicts the wing performance with

deflected leading-edge flaps with good accuracy only

up to lift coefficients of about 0.5. But as shown

subsequently, optimum performance requires that



trailing-edgeflapdeflectionsaccompanyleading-edge
deflections;for theseconditions,improvedcorrela-
tionswill benoted.

Figuresl(a), l(d), andl(g) formaseriesinwhich
trailing-edgeflapdeflectionvarieswhilethe leading-
edgeflap remainsundeflected.As shownin these
figures,the primarybenefitof trailing-edgeflapde-
flectionisanincreaseinnormalforceat agivenangle
of attack. Thereis alsoan accompanyingincrease
in axial force,but this increasedoesnot outweigh
thenormal-forcebenefits.In effect,thewingahead
of the trailing-edgeflapactsasa large-arealeading-
edgeflap. In general,thereis a goodpredictionof
the lift-drag relationshipfor the deflectedtrailing-
edgeflapdata,especiallyin theC L range from about

0.2 to 0.6. This good prediction of drag occurs in

spite of an underprediction of both axial and normal

forces for the 20 ° flap deflection. Measured drag co-

efficients are lower than program predictions only for

very small lift coefficients at the 20 ° deflection.

The behavior of the lift-drag data for this wing

points out a difference in the effects on performance

of separated flow in the leading-edge flap region and

separated flow in the trailing-edge flap region. As
discussed in reference 2, flow separation from the

trailing-edge flap surface is much less likely to cause

performance penalties than is flow separation from

the leading-edge flap surface. This can be illustrated

through the use of sketches. Sketch I shows the rela-

tionship between lift and drag changes on the wing as

dC D

Sketch I

a whole as the result of a change in the trailing-edge
flap loading. If changes in flow conditions such as

those induced by changes in Reynolds number cause

loading changes restricted to the flap itself, incremen-

tal changes in lift and drag are related according to

the expression

dCD - tan(a + _T,s)
dCL

These considerations cause a loss in flap loading due

to separation to bring about a loss in lift, which

is accompanied by a decrease in drag. The net

result is that the lift-drag ratio for an optimally

6

deflected flap at a given lift coefficient is changed

very little. An illustration of the effect of trailing-

edge flap separation for the present configuration is

given in sketch J. The arrows show the direction

C D

0 _ __L,n _T,n 20°
.20 .

.12

.08 ]
.04

0 " J
-.2 0 .2 .4 .6 .8

C L

Sketch J

of the relative change in lift and drag caused by a

loss in loading on the trailing-edge flap itself. The

hatched area indicates the magnitude of the change if

50 percent of the theoretical loading is lost. As shown

subsequently, with no leading-edge flap deflection,

the 20 ° trailing-edge flap deflection is optimum for
a C L of about 0.8. At this condition, changes to lift

and drag tend to occur along a tangent to the polar

curve; thus, there is little or no performance penalty.

Actually, penalties (drag increases) occur only for the
lift coefficients in access of 0.8. For lift coefficients

less than that at which the deflection is optimum,

the separation brings about a decrease in drag, an

effect noted in the experimental data. However, this
drag reduction is relative to the excessive drag of

a surface deflected beyond the optimum for that lift

coefficient. Separation would not be expected to lead

to a drag lower than that of an optimally deflected
surface.

The relationship between lift and drag changes

on the wing as a whole because of a change in
leading-edge flap loading alone, which is illustrated

in sketch K, may be expressed as

dCD
-- tan(_ - 6L,s)

dCL

Because of the negative sign, a loss in lift coefficient

caused by a reduction of leading-edge flap loading

is generally accompanied by an increase in drag.
When applied to the present example, changes such
as those shown in sketch L result. The arrows show

the relative change in lift and drag caused by a

loss in loading on the leading-edge flap itself, and
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Sketch K

the hatched area indicates the magnitude of the

change if 50 percent of the theoretical loading is lost.

Obviously, there are severe penalties associated with
the failure of the leading-edge flap to produce the

anticipated loading.

.20 -
SL, n--30 ° ST, n=0 °

C D

.16 -

.12 -

.08 -

.04 -

0

Sketch L

As discussed in reference 1, an appreciable loss in

leading-edge flap loading occurs only if the flow fails
to reattach ahead of or in the vicinity of the flap hinge

line. When reattachment occurs aft of the hinge

line, the leading-edge flap loading is reduced and the

previously discussed penalties come into play. There
are also additional penalties associated with leading-

edge flow separation and the failure of the flow to

reattach in the vicinity of the hinge line that are not

covered by this simple analysis. These penalties can

become particularly severe when reattachment to the

wing surface does not occur at all.

The remaining parts of figure 1 cover combina-

tions of leading- and trailing-edge flap deflections. In

figure l(e), for a moderate leading-edge flap deflec-

tion in combination with a moderate trailing-edge

flap deflection, there is a good correlation of theory

and experiment up to an angle of attack of about 12 °

and a lift coefficient of about 0.7. Above this point,

the leading-edge flow separation region probably ex-

tends well beyond the hinge line and prevents the

attainment of a predominantly attached flow. For

the flap deflection combination with 6L, n ---- 15 ° and

$T, n = 20 ° (fig. l(h)), there is a good correlation for
the lift-drag polar in spite of evidence of trailing-edge
flap separation. In view of the preceding discussion

and the data for leading-edge and trailing-edge flaps

alone, this might have been expected. For the com-

bination with 6L, n = 30 ° and 6T, n = l0 ° (fig. l(f)),
the same discrepancies as for the 30 ° leading-edge

flap deflection alone may be noted. However, there

is still a moderate C L region (0.3 to 0.5) in which

the data appear to have predominantly attached-flow

characteristics. For the extreme case of _L,n ---- 30°

and 6T, n = 20 ° (fig. l(i)), there is evidence of ex-
tensive flow separation. There is still some degree of

correlation for the lift-drag polar in the C L = 0.4 to

0.6 region, even though it may be fortuitous.

Suction-parameter data for all the tested combi-
nations of leading- and trailing-edge flap deflections

are shown in figure 2. Experimental and program

suction parameters are shown as a function of lift co-

efficient. The primary purpose of these data is their

use in an exercise to determine as accurately as possi-

ble the maximum aerodynamic efficiency of the flap

system and the flap deflections required. This in-

formation is helpful in assessing the applicability of

linearized-theory attached-flow methods to the anal-

ysis (and presumably the design) of flap systems op-

erating at or near maximum-efficiency conditions.

Experimental suction parameter as a function

of leading-edge flap deflection angle for the three

trailing-edge flap deflection angles and for four lift

coefficients is shown at the top of figure 3. At the

bottom of the figure, suction parameter is shown

as a function of trailing-edge flap deflection for the

three leading-edge flap deflection angles. The data

represented by the symbols were obtained from fair-

ings of the experimental data of figure 2. Fairing
of these data points in figure 3 is intended to repre-

sent as accurately as possible the variation of suction

parameter with deflection angles. An attempt was

made to have each curve bear a family resemblance

to each other and to display changes in a progressive
manner.

The dashed curve in figure 3 represents an en-

velope, the maximum suction parameter obtainable

with the optimum value of 6T, n at the top of the fig-
ure, and the maximum suction parameter obtainable

with the optimum value of thL, n at the bottom of the
figure. The points to generate these curves were ob-

tained by referring to both top and bottom plots for

7



a givenlift coefficient.For example,themaximum
valueof suctionparameterfor a givenleading-edge
flapdeflectionfromthebottomplot isenteredin the
topplotat thedesignatedleading-edgeflapdeflection
angle.Thisalwaysgivesa point equalto or greater
thanthepointsrepresentingthefairedexperimental
datafromfigure2. An additionalcheckonthe gen-
erationof theoptimumcurvesis that themaximum
suctionparameterof eachof thepair ofcurvesmust
beidentical--therecanbeonlyonepeak.Thecom-
pletedfairingsprovidedata that describethemaxi-
mumsuctionparameterandthecorrespondingopti-
mumleading-andtrailing-edgedeflectionangles(the
arrows)asa functionof the lift coefficient.

Envelopedatafromthedashedcurvesof figure3
andsimilardata fromcoderesults(not presented)
areshownin figure4. Optimumleading-andtrailing-
edgedeflectionanglesandthemaximumsuctionpa-
rameterareplottedas a functionof the lift coeffi-
cient. The theoreticaldatawith attainablethrust
andvortexforcesincludedprovidea goodestimate
of themaximumsuctionparameterandtherequired
deflectionangles. The only really significantdis-
crepancyis in the leading-edgedeflectionanglefor
CL = 0.8. The theoretical data indicate that, for op-
timum deflection angles and maximum performance,
the attainable thrust and vortex-force contributions

are small. This is in accordance with the concept

that maximization of flap-system aerodynamic per-
formance requires a flow that is as nearly attached

as circumstances allow. For the optimum flap deflec-

tion combinations, good aerodynamic performance is

achieved. At low lift coefficients, suction parameters

of about 0.9 are developed; even at C L = 0.8, where
there is some evidence of hinge-line separation, a pa-
rameter of about 0.75 was measured.

Vortex-Flap Wing-Body Configuration

Data for a wing with leading-edge vortex flaps

and a 74 ° swept hinge line given in reference 9 are

presented in figure 5. Three sets of leading-edge flap

deflection angles were tested in combination with

three sets of trailing-edge flap deflection angles, so

that again it is possible to define maximum suction

parameters and optimum flap angles. The tests were

conducted in the Langley 7- by 10-Foot High-Speed
Tunnel at a Mach number of 0.4 and a Reynolds
number of 5.4 x 106.

Figure 5 shows the longitudinal aerodynamic

characteristics for all possible combinations of 0 °,

30 °, and 45 ° leading-edge flap deflections and 0 °,

10 °, and 20 ° trailing-edge flap deflections. The data

in figure 5(a) for undeflected flaps show the presence
of a small amount of leading-edge thrust. The code

estimate of attainable leading-edge thrust is based
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on an assumption of a constant leading-edge radius

of 0.002 in. across the whole wing span of 27.24 in.;

this radius is less than the thickness of a page of this

report. There is, for this highly swept wing, a sub-

stantial contribution of the separated leading-edge
vortex force to the normal force. The vortex force

for this wing is much more powerful than that for

the previous configuration. There is some failure of

the code to predict the full magnitude of the normal

force; consequently, there is a small overestimation

of the drag.

Figures 5(a), 5(b), and 5(c), taken as a set, show

the effects of leading-edge flap deflection for an un-

deflected trailing-edge flap. Within the range of the

data presented, there is generally an excellent corre-

lation of code data with experiment. There is a de-

creasing contribution of both the attainable leading-

edge thrust and the vortex force for the flap-design
lift coefficient of about 0.4 as the flap deflection angle
is increased.

Figures 5(a), 5(d), and 5(g) show the effects

of trailing-edge flap deflection for an undeflected

leading-edge flap. As with the previous configura-

tion, there is a good prediction of the lift-drag rela-

tionship in spite of an overestimation of the increase

in axial and normal force caused by trailing-edge flap

deflection. This good prediction again shows that

flow separation from a trailing-edge flap does not
necessarily degrade performance for flaps deflected

beyond the optimum deflection for a given lift co-

efficient. As shown subsequently in this report, a

trailing-edge flap deflection of 20 ° would be required

for performance optimization only for lift coefficients
in excess of 0.8.

Combinations of leading-edge and trailing-edge
deflections are shown in the remaining parts of fig-

ure 5. Taken as a whole, the nine parts of figure 5

show a very good correlation of theory and exper-

iment. There are appreciable discrepancies only at

large lift coefficients for underdeflected flaps (where

vortex force is underestimated) and at low lift co-

efficients for overdeflected flaps (where undersurface

flow separation is the probable cause).

Suction-parameter data for all the flap deflection
combinations covered in figure 5 are shown as a func-

tion of lift coefficient in figure 6. Figure 7 shows suc-

tion parameter as a function of leading- and trailing-

edge flap deflection angles for each of four selected lift

coefficients. This figure is similar to figure 3 for the

cranked leading-edge fighter. The detailed descrip-

tion of the generation of the plots and their use given

in the previous section are not repeated here. In ref-

erence 9, a leading-edge flap deflection of 40 ° was

also tested. In fact, this was the selected deflection

for the design lift coefficient of about 0.4. Data for



the40° deflection have been added to the top set of

plots in figure 7. As can be seen, the 40 ° leading-edge

flap deflection in combination with a 10 ° trailing-

edge flap deflection produced the best measured per-

formance at C L = 0.4.

Comparison of data for the vortex-flap wing-body

configuration with data for the cranked leading-edge

fighter shows that the performance of the vortex-flap

wing-body configuration shown in figures 6 and 7 is
much less sensitive to flap deflection angle than is

the performance of the cranked leading-edge fighter
shown in figures 2 and 3. A large part of this

difference, according to the theoretical data, may be

attributed to the stronger vortex for the highly swept

wing with no leading-edge crank.
Envelope data from figure 7 and similar data from

code results (not presented) are shown in figure 8.
Optimum leading- and trailing-edge deflection angles

and the maximum suction parameter are plotted as
a function of the lift coefficient. The theoretical data
with attainable thrust and vortex forces included

provide a good estimate of the maximum suction

parameter and the required deflection angles. The

only significant discrepancy is in the leading-edge

deflection angle for CL ---- 0.8. The theoretical

data indicate that, for optimum deflection angles and

maximum performance, the attainable thrust and
vortex-force contributions are small at the lower lift

coefficients. At the higher lift coefficients, the vortex

contribution becomes larger.

The analysis of this report indicates that the

vortex-flap design and the attached-flow design are

not opposing approaches, but are in fact closely re-
lated. The successful vortex-flap design actually sup-

presses the formation of detached vortices to produce
a small vortex which is restricted almost entirely to

the leading-edge flap itself.

44°-Swept Trapezoidal-Wing Fighter

Reference 10 provides the flap deflection data

shown in figure 9 for a generic fighter configura-

tion tested in the Langley 7- by 10-Foot High-Speed

Tunnel at M = 0.4 (R : 1.9 x 106 ) and M = 0.8

(R = 3.1 x 106). Perhaps because of an emphasis
on canard and horizontal tail effects, a full matrix of

flap deflections was not covered. Nevertheless, there

are sufficient data for specific leading- and trailing-

edge flap deflection combinations to provide a test of

program prediction capabilities.

Figure 9(a) shows data at M = 0.4 for undeflected

flaps. Because of a code overestimation of the vortex

force, correlation of theory and experiment is poor

beyond CL ,_ 0.5. For an 8° deflection of both
leading- and trailing-edge flaps shown in figure 9(b),

there is good correlation up to C L _ 0.8. The

12 ° and 20 ° deflection data of figures 9(c) and 9(d)

indicate good correlation of lift and drag up to CL

values approaching 1.0, again in spite of evidence of

trailing-edge flap separation.

In reference 10, equal deflections of leading- and

trailing-edge flaps (angles measured normal to the

hinge line) were apparently considered to represent
an optimum configuration. The contour map of

figure 10 was prepared to determine what ratio of

leading-edge to trailing-edge flap deflection the code
would call for. The map was constructed for a

lift coefficient of 0.8 using guidelines described in

appendix B. The code indicates an optimum leading-

edge flap deflection angle of 21.2 ° , which is about 1.4

times the optimum trailing-edge flap deflection angle
of 14.9 °. A similar map for CL = 0.4 (not presented)

gave smaller optimum deflection angles but about
the same ratio. The code indicates, however, that

equal deflections would result in only a small loss in
efficiency. There is insufficient experimental data to

identify a true optimum combination.

Figures 1 l(a) to l l(d) provide flap deflection data

similar to that of figure 9, but for a Mach number of

0.8. Data for the code prediction without attainable
thrust and vortex forces as well as the theoretical

bounds are omitted, because the primary purpose
here is to assess the effect of Mach number on the

experimental-theoretical correlation. It is not sur-

prising that the correlation of theory and experiment

at this higher Mach number is considerably poorer.

For undeflected flaps (fig. ll(a)), there is a breakaway
in axial force for the experimental data (probably

caused by shock development) at an angle of attack

of only 8° or a lift coefficient of about 0.5. For deflec-
tions of 8° for both flaps shown in figure ll(b), the

breakaway is delayed, and good correlation is shown

up to C L _ 0.8. For 12 ° deflection (fig. ll(c)), good

correlation is obtained up to C L ,_ 0.7. With the

deflections increased to 20 ° (fig. ll(d)), there is evi-

dence of trailing-edge flap flow separation as well as

shock effects, and the overall correlation is poor.

60°-Swept Delta-Wing Fighter

Data for a companion to the preceding configura-
tion are also reported in reference 10. The 60 ° delta-

wing fighter was tested with both rounded and sharp

leading-edge airfoil sections.
Data for a wing with a 64A00X (64A) section

(6 percent thick at the root, 4 percent thick at

the tip) are shown in figure 12. For undeflected

flaps, figure 12(a) shows an underprediction of at-
tainable thrust illustrated in the C A plot and an over-

prediction of the vortex force illustrated in the C N

plot. These errors tend to compensate for one an-

other, and there is a reasonably good prediction of



the lift-drag characteristics. Figures 12(b) to 12(d)

form a series in which the trailing-edge flap deflection

varies while the leading-edge flap deflection remains
constant at 20 ° . The same discrepancies as noted for

the undeflected case persist, but there is nonetheless

a good prediction of lift-drag performance. Suction

parameters for the three deflections as a function of

lift coefficient are shown in figure 13. There is an

improvement of suction parameters for the higher
lift coefficients as the trailing-edge flap deflection in-

creases. For C L _ 0.6, the optimum trailing-edge

flap deflection (with (_L,n fixed at 20 °) appears to
be only slightly less than 20 ° . For this condition,
the code indicates a small contribution of attainable

thrust and an even smaller vortex-force contribution.

Optimum leading-edge flap deflections for this

configuration were considered to be between 1 and

2 times the trailing-edge flap deflections (ref. 10).

The contour map of figure 14, generated from code

data for C L : 0.6, indicates that an optimum com-

bination would be 5L,n = 24-0° and 5T,n = 17.6°, a
ratio close to 1.4.

Some sample data for the configuration tested

with a sharp leading-edge wing section are shown

in figure 15. The code data shown here are for an

estimated constant leading-edge radius of 0.002 in.

With the exception of a small decrease in leading-

edge thrust, the data for the sharp leading edge are

similar to those for the 64A section. Figure 16 shows

suction-parameter data for a 20 ° deflection of both

leading- and trailing-edge flaps as a function of lift

coefficient. The suction parameter for the rounded

leading-edge section is slightly better than that for

the sharp section, because the rounded leading edge
provides for a greater margin of error in achieving a

proper leading-edge flow alignment to minimize flow

separation.
Data for the wing with the rounded leading edge

tested at M = 0.8 are given in figure 17. There is

reasonably good prediction of the undeflected flap

performance. Correlation is not good for the data

where 5L, n ._ 20 ° and _T,n ": 20o, but it is better
than the corresponding correlation for the 44°-swept

trapezoidal-wing fighter. The higher sweep angle
should decrease the tendency for shock formation.

Generally, however, it appears that the code cannot

be relied on for transonic performance predictions.

Generic Arrow-Wing Supersonic Transport

Reference 11 provides the aerodynamic data for

a highly swept, untwisted, and uncambered arrow-

wing configuration with leading- and trailing-edge

flaps shown in figure 18. The tests were performed

in the Langley 4- by 7-Meter Tunnel at a Mach

number of 0.25 and a Reynolds number of 4.8 x 106.
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The leading-edge flap is characterized by a long root

chord and a large taper. The trailing-edge flap is

segmented to fit between the fuselage and inboard
nacelle and between the inboard nacelle and the

outboard nacelle.

The flap deflection data of reference 11 are insuf-

ficient for determining optimum flap settings. There

are, however, enough data to provide a test of
the code and to illustrate some trends. A sam-

ple of data from this investigation is shown in fig-

ure 18. Figure 18(a) shows data for undeflected flaps.
The correlation indicates attainable thrust somewhat

larger than predicted and a somewhat better-than-

predicted lift-drag performance. Figures 18(b) to

18(e) form a series in which the trailing-edge flap de-

flection varies while the leading-edge flap deflection

remains constant at (_L,n = 30°" For all these data
there is a good correlation of theory and experiment.

Figure 19 is composed of two parts. At the left

of the figure, suction parameter with (_L,n = 30° is
shown as a function of CL for each of the trailing-

edge flap deflection angles. At the right, suction

parameter is shown as a function of 6T,n for three
selected lift coefficients. The program data predict
both the magnitude and trends of the experimental

data quite well. The maximum suction parameter of

0.67 for CL = 0.6, which represents takeoff or touch-

down conditions for a typical supersonic transport

(a _ 12°), is reasonably good, but is somewhat lower
than might be expected of a well-designed system.

The remainder of the discussion of this configuration

and much of the discussion of the next configuration

is devoted to the search for better performance at a

representative C L of 0.6.

In the section of this paper entitled "Fundamen-

tal Flap Performance Considerations," the concept

of replacing a concentrated theoretical leading edge
with a distributed force acting on a deflected flap

was discussed. With that idea as a starting point,

the code-calculated spanwise distribution of leading-

edge thrust for the flat wing is shown in sketch M.

The kink in the distribution near the _ = 0.2 sta-

tion is caused by the wing-body juncture. Other-

wise, the curve is relatively smooth. For any given

lift coefficient, 0.6 for example, the spanwise distribu-

tion of the leading-edge thrust would have the form

of the curve of sketch M. This leads to the argu-

ment that inboard flap chords can be smaller rather
than larger than outboard flap chords and still sup-

port the necessary distributed thrust loading. A pro-

cess considerably more complicated than the simple

idea expressed above (e.g., ref. 4) was used in deriva-

tion of reduced inboard chord flaps for the next con-

figuration to be studied. The preceding argument,



however,is sufficientto justify the considerationof

inverse-taper flaps for highly swept wings.
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Advanced Arrow-Wing Supersonic

Transport

An experimental program investigating flap sys-

tems for an advanced supersonic transport (SST)

with a wing twisted and cambered for supersonic
cruise is described in reference 12. Test data for de-

flections of two separate inverse-taper leading-edge

flap planforms with a segmented trailing-edge flap
are given in figure 20. In the discussion of these data

it is important to note the difference in the measure-

ment of deflection angle for the two flap systems. For

flap system A, angles were measured normal to the

hinge line; for flap system B, angles were measured
in the streamwise direction. The data were obtained

at a Mach number of 0.21 and a Reynolds number

of 4.1 x 106 in a 7- by 10-foot wind tunnel at Texas

A&M University.
Data for the undeflected flaps are shown in fig-

ure 20(a). These data are applicable to both leading-
edge flap planform A (the larger inboard chord) and

leading-edge flap planform B (the smaller inboard

chord). The wing employed twist and camber de-

signed for supersonic cruise, which is responsible for

the slope of the axial-force curve and the positive
value of CN at a -- 0% Again, there is evidence of

the development of a small amount of leading-edge

thrust. In general, the measured characteristics are

predicted quite well.

Figure 20(b) shows data for trailing-edge flaps

deflected to 20 ° with leading-edge flaps undeflected.

These data are also applicable to both flap A and

flap B. The correlation here is also considered good.

Figures 20(b), 20(c), and 20(d) form a series

in which the leading-edge deflection of flap sys-
tem A varies, while the trailing-edge flap deflection

remains fixed at 20 °. There is a better prediction

of axial-force characteristics at 5L, n = 40 ° than at

_L,n : 30°" This is puzzling. Nevertheless, there is
a reasonably good prediction of lift-drag characteris-
tics for both deflections.

Figures 20(b), 20(e), and 20(f) form a series
in which the leading-edge deflection of flap sys-

tem B varies with a fixed trailing-edge flap deflec-

tion. For flap system B, deflections are measured in

the streamwise direction; thus, these deflections are

much larger than those for flap system A. For ex-

ample, the _L,n "_ 40° deflection of flap A produces
streamwise angles of only 13.0 ° and 26.4 ° for the in-

board and outboard panels, respectively. There is

a good prediction of aerodynamic characteristics for

the _L,s = 20o deflection. Correlation is poorer for
the 40 ° deflection, but the correlation is best in the

C L = 0.5 to 0.7 range, where the effects of flow sep-

aration are apparently smaller.

Figure 21 shows suction parameter as a function

of lift coefficient for the three leading-edge flap de-

flections of both flap systems. Using data from these

plots, figure 22 shows suction parameter as a function

of leading-edge flap deflection angle for three selected
lift coefficients. From these derived data, it is shown

that the two flap systems offer comparable perfor-
mance. Flap system A offers a slight advantage at

e L = 0.6, and flap system B offers a slight advan-
tage at C L = 0.8. As expected, optimum deflections

for flap system B, with its streamwise angle measure-

ment, are smaller than those for flap system A.

At a representative lift coefficient of 0.6, flap

system A of reference 12 offers a small increase in

suction parameter (Ss = 0.79 experimentally; Ss =

0.71 given by the code in fig. 22) compared with the
larger inboard chord flap system of reference 11 ($8 =

0.67 experimentally; Ss = 0.67 given by the code in

fig. 19). In the following discussions, code data, both

analysis and design, are used to explore possibilities
for further improvements in aerodynamic efficiency

by flap-system modifications.

Figure 23 shows calculations of the spanwise vari-

ation of the angle of attack for zero thrust _zt, and

the range of a for which full thrust is available. For

the data shown here, the leading-edge deflection an-

gle varies, but the trailing-edge flap deflection angle
remains fixed at 20 °. The quantity azt represents

the angle of attack of the wing as a whole that is

required to bring about an onset flow condition at

a specified span station. With the wing at this an-

gle, there is theoretically no leading-edge flow sepa-

ration at the given station. The range of full thrust

/_af$ indicates the angular tolerance within which
flow remains attached and full theoretical thrust is

developed. This range, as determined by theoretical

and empirical relationships discussed in reference 4,
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dependson the wing-sectiongeometriccharacteris-
tics,thewingsweepangle,theMachnumber,andthe
Reynoldsnumber.Thus,for anglesof attackwithin
therangeof full thrust (azt :l: Aayt), which is rep-
resented by the hatched area in figure 23, attached

flow could be expected. The plots in the figure show

how, according to the evaluation code, changes in

the wing surface alter the range of full thrust and
affect the possibilities for attached flow. According

to these data, even for _L,n = 400, the angle of at-
tack required for C L = 0.6 (about 10 °) is outside
the range of full thrust, and flow separation would

be expected. The amount of leading-edge separation

at 6L, n = 40 ° would, however, be relatively small,
and the resultant vortex flow, if largely confined to

the leading-edge flap itself, could counteract in part

the loss in leading-edge thrust. The plot of suction

parameter versus deflection angle at the bottom of

the figure indicates that the optimum deflection for

this example is close to 40 ° .
The wing-design code of reference 3 has been used

as a guide in evaluating the maximum aerodynamic

performance potential of the wing and describing the

required wing-surface ordinates. The design condi-

tions used in the code are C L = 0.6 at a Mach num-

ber of 0.21 and a Reynolds number of 4.1 × 106. No

restriction is placed on Cm. The wing-surface ordi-

nates plotted in figure 24 theoretically give an opti-

mized suction parameter of about 0.90. This design

provides for a theoretical leading-edge onset flow that
is tangent or nearly tangent to the leading-edge sur-

face, as shown in sketch N. Because the range of full
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thrust (the hatched area) nearly covers the design an-
gle of attack, only a mild-degree and limited-extent

flow separation would be expected. Because this de-

sign surface differs from the supersonic cruise design

over the whole of the wing planform, it is difficult

to devise a simple flap system to replace the design

surface and approach the performance benefits. Nev-
ertheless, reference 2 offers guidelines for adapting
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the whole wing-design approach to the selection of

flap geometry. Reference 2 also describes how the

restricted-area design feature of the program may
be employed in defining efficient flap surfaces. How-

ever, this latter procedure requires multiple runs to

insure that proper consideration is given to trailing-

edge flap contributions to the aerodynamic efficiency.

Experience has shown that there is a better pro-

cedure; this procedure is described in the following

paragraph.

A recommended procedure for using the wing-
design program in the selection of flap geometry is
as follows:

(1) Perform a whole-wing design for the entire

wing planform at the design lift coefficient, Mach

number, and Reynolds number conditions. Use no

moment restraint if performance alone is the concern,
but specify a design moment if trim conditions must

also be considered. This design provides an indica-

tion of performance potential and aids in the selec-

tion of local flap chords within limitations imposed

by wing structural restraints. Generally, flap chords

should be as large as structural considerations allow;
however, the whole-wing solution sometimes shows

areas where leading-edge flap chords may be reduced
or eliminated.

(2) Perform a restricted-area wing design for the

same flight conditions and for a moment coefficient

Crn,de s at the design lift coefficient as given by the
whole-wing solution. Imposition of the design mo-

ment insures that adequate consideration is given to

trailing-edge flap contributions to lifting efficiency.

Use a restricted-area chord equal to the actual flap

chord, and activate the flap-design (FLPDES) fea-

ture of the code to provide a spanwise flap deflection
schedule.

(3) Examine the code output flap deflection

schedule and modify it as necessary to meet design

restraints such as those imposed by spanwise segmen-

tation. Also, since the theoretically recommended

deflections are only approximations, not true opti-

mums, experience may be applied in modifying re-

sults, particularly in the reduction of large indicated

angles. Application of the wing evaluation code to

the selected flap system as was done for the preced-

ing correlation examples will help in defining more
accurately the optimum deflections.

An example of the application of the restricted-

area design to the advanced SST is shown in fig-

ure 25. The design conditions are again CL = 0.6

at a Mach number of 0.21 and a Reynolds number of

4.1 × 106. ACm restraint of-0.05, as given by the

whole-wing design at CL = 0.6, is also imposed. The

flap chord schedule of flap system A is retained. As



illustratedin sketchO, thedesignsurfaceshouldal-
lowonlyamilddegreeandlimitedextentofleading-
edgeflow separation.Tick markson the camber-
surfacecurvesindicatethe locationof theflaphinge
line(longticks)andthelimit ofthedesignarea(short
ticks). The code-calculatedsuctionparameterfor
this restricted-areadesignis about 0.84compared
with 0.90for thewhole-wingdesign.Thesolidsym-
bols in the plotsof leading-and trailing-edgeflap
deflectionanglesindicatecode-calculatedvaluesas
describedin appendixA. Thesolidlinein theseplots
givesa modifiedscheduleimposedby segmentation
and, in the caseof the trailing-edgeflaps,by expe-
rience.Thetwosmall-span,trailing-edgeflapsmake
it difficult to obtaina validnumericalsolutionwith
onlyeightspanwiseelements.
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When the flap deflection schedules given in fig-

ure 25 are used in the wing evaluation program, the

data generated may be used in the preparation of a

performance map (fig. 26) according to procedures
described in appendix B. This map shows contour

lines of equal suction parameter at a lift coefficient

of 0.6 with 6L,s factor and 5T,s factor as the inde-
pendent variables. In previous performance maps, it

was possible to use flap deflection angles as the inde-

pendent variables, because in those cases the flap de-

flection angle and the hinge-line sweep angle had no

spanwise variation. When this condition is not met,

the use of input flap deflection multipliers (described

in appendix B) to generate additional surfaces for
code analysis no longer permits their representation

by a single spanwise-invariant deflection angle. The

only recourse is to use the multipliers or factors them-

selves. As shown in figure 26, the optimum leading-

edge deflection factor is about 0.88 instead of the

1.00 value which corresponds to the input deflections

of 22 ° for the inboard panel and 28 ° for the out-

board panel. Thus, a more nearly optimum deflec-

tion for the leading-edge flap is 19.5°/25.0 ° . The

trailing-edge flap deflection optimizes at about 16° .

The maximum suction parameter for these designed

flap deflections is about 0.73, which is only slightly

better than the parameter of 0.71 obtained with the

_L,n = 30° (_L,s = 9.00/18.9°) setting.
Figure 27 shows a for zero thrust and the range of

full thrust as a function of span position for this new

deflection schedule. The trailing-edge flap deflection

is held constant at 20 ° as was the case for the original

plots for _L,n m 20 ° and 40 ° in figure 23. For the

design condition ($L,s factor = 1), the range of full
thrust extends to the a for CL = 0.6 line only at

a station of about (}.25. The wing-body juncture

makes it difficult for the code to give accurate values

of _zt in the region, inboard of the 0.20 station, and

the assumption that the leading-edge radius is zero

at y = 0 underestimates the range of full thrust

inboard of the juncture. The real flow probably

would be essentially attached inboard of the 0.25

station. Beyond that point, according to the theory,

the leading-edge flow detaches and a separated vortex
is formed. There is a loss of thrust, but it is made

up for in part by the vortex-force contribution to

the lift. As indicated by these theoretical results,

attached flow over the outer portion of the wing

cannot be achieved, even with a doubling of the

_L,s factor. For such large deflection angles, there
are nonlinear drag penalties, and, as indicated by

the plot of suction parameter versus _L,s factor,
these penalties bring about a severe deterioration in

performance. A larger leading-edge flap chord for the

outboard panel, particularly in the wingtip region,

could improve performance by creating a surface

more closely approximating the whole-wing design

surface of figure 24.

Because the segmented small-span trailing-edge
flaps may be responsible for some performance losses,

a study of this configuration with full-span trailing-

edge flaps was made. A restricted-area design for

the same conditions as before, but with a full-span

trailing-edge flap, is shown in figure 28. The suction

parameter for this surface is promising at about 0.90,
the same as that for the whole-wing design. However,

when the flap deflections indicated in the plots of

figure 28 were used in the wing evaluation program,

the maximum suction parameter (fig. 29) was 0.77;
this suction parameter was an improvement over the

other flap systems but was far below the smooth-

surface optimums.

The results of the steps that were taken to im-

prove flap performance for a representative SST

configuration are shown in figure 30. Theoretical

suction parameters for specified surfaces and for opti-

mum or near-optimum combinations of leading- and

trailing-edge flap deflection angles are shown in the
bar chart. For the flat-wing configuration at the top
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of the figure,a suctionparameterof about0.32is
predicted.Thispredictionincludestheeffectsofthe
estimatedattainablethrust andvortexforces.The
measuredperformancewasactuallysomewhatbetter
(Ss= 0.45)butstill leftmuchroomforimprovement.
A flap systemwith a large-chordinboardleading-
edgeflap resultedin a predictedsuctionparame-
ter of about0.67for a near-optimumcombination
of leading-and trailing-edgeflapdeflections.This
conditionproducedresultsthat wereverycloseto
the measuredperformance.A similarconfiguration
with a muchsmallerinboardleading-edgeflaphad
a predictedsuctionparameterof about0.69anda
measuredparameterof about0.77. This improved
performancewasachievedwith a leading-edgeflap
of abouthalf the areaof the original. This reduc-
tion wasperhapstoo extreme;thenext flapconfig-
urationwith smallerreductionin the inboardchord
hadasomewhathigherpredictedsuctionparameter
of about0.71and a measuredvalueof about0.79.
Whenthewing-designcodewasusedto devisea flap
systemwith a better theoreticaldistributedthrust
force, a slight improvementto a suctionparame-
ter of about0.73waspredictedby the wingevalu-
ation code.With theunrealisticassumptionof full-
spantrailing-edgeflaps,asuctionparameterofabout
0.77is predicted.However,this predictionstill falls
far shortof the predictedperformanceof a mission-
adaptiveor restricted-areacamber-surfacedesign.If
the searchfor a moreefficientflapsystemwereto
becontinued,additionalattentionwouldneedto be
givento theoutboardleading-edgeflap;this iswhere
theflat-wingtheoreticalleading-edgethrust is most
pronouncedand wherethe potentialfor the devel-
opmentof distributedthrust ona modifiedsurface
is greatest.Amongthe changesthat mightbecon-
sideredarealargerflapchordand/ordouble-hinged
flapsto morecloselyapproximatea smooth-camber
surface.

60°-Swept Trapezoidal-Wing Fighter

Subsonic flap configurations for the supersonic

cruise fighter tested in reference 13 were selected by

using an early version of the wing analysis code in a

design-by-iteration mode. The tests were performed

in the Langley 7- by 10-Foot High-Speed Tunnel at

Mach numbers of 0.3, 0.5, and 0.7 with correspond-

ing Reynolds numbers of 1.9 × 106, 2.9 x 106, and

3.3 x 106. Test data for a variety of combinations

of leading- and trailing-edge flap deflection angles

tested at a Mach number of 0.5 are shown in fig-

ure 31. Axial-force data for undeflected flaps pre-

sented in figure 31(a) show evidence of the mild twist

and camber of the supersonic wing design and indi-

cate the presence of an appreciable amount of attain-

able thrust. There is a good correlation of program

and experimental data for all parts of figure 31. The

greatest discrepancy occurs in figure 31(g) for the

largest deflections tested. For low angles of attack,

there apparently is a flow separation on the lower sur-

face of the leading-edge flap which results in lower-
than-predicted axial force and drag. At the higher

lift coefficients, where the flow for these large deflec-

tions is more likely to be predominantly attached,

there is again a good correlation. The segmented

leading-edge flap data presented in figure 31(h) pro-

duced the lowest drag at the design CL of 0.73 of
all the deflection combinations tested. Selection of

the 6L,s : 15°/200 (inboard/outboard) schedule was
based on an examination of code data for various

candidate combinations.

Figure 32 shows suction parameter plotted versus

lift coefficient for three leading-edge flap deflection

angles and two trailing-edge flap deflection angles.

For lift coefficients greater than about 0.4, there

is generally a good prediction of the flap-system

performance. The greatest discrepancy occurs at low

lift coefficients for a trailing-edge flap that is deflected
to an angle greater than that required for optimum

performance. This behavior was noted and discussed

in previous examples herein.

The tests of reference 13 included a leading-edge

flap with a reduced-chord inboard segment. Fig-

ure 33 presents data to provide a comparison of the

two leading-edge flap planforms. For both configura-

tions, _L,s is 15 ° for the inboard segment and 20 ° for

the outboard segment, and ST, s is 15° for the inboard
segment and 12 ° for the outboard segment. This was

the best of the combinations tested for the large-

chord, inboard, leading-edge flap segment. Within

the accuracy of the measurements, the two flaps may

be considered to have equal performance. This is

consistent with similar data for the SST configura-

tion previously treated. Because of size and weight

considerations, the smaller-chord version would again

have the advantage.

For the best of the flap-deflection combinations
tested, a suction parameter of about 0.84 was pre-

dicted and an experimental value of about 0.89 was

obtained at the design C L of 0.73. Application of the

wing-design code to the problem is not likely to bring

about any significant improvement. Nevertheless, it
would be of interest to examine the concurrence be-

tween design-process results and those of the itera-
tive approach. Figure 34 shows the camber surface

for a whole-wing design with CL,de s = 0.73 at a Mach

number of 0.5 and a Reynolds number of 2.9 x 106.

This design gives a suction parameter of about 0.9.

In accordance with a previously described flap-design
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processandthe assumptionthat no restraintsneed
beplacedon Cm, the Cm generated by the whole-

wing design of -0.17 was used in a restricted-area
design illustrated in figure 35. In the derivation of

flap deflections from the program-listed recommen-

dations, four segment flaps were assumed. When the

flap deflection schedules indicated by the solid lines

in the plots of figure 35 were used in the wing eval-
uation code, a suction parameter of about 0.83 was

obtained. This suction parameter was slightly lower

(about 1 percent) than the predicted suction param-
eter for the original two-segment flap system, which

points out some precautions in the use of the wing-

design code for flap deflection. First, the wing-design

code listing of suggested flap deflection schedules is

only an approximation based on a graphical fitting

of straight-line segments to a continuous curve and

does not necessarily represent a true optimum. Sec-

ond, the wing evaluation code provides for a more

accurate handling of discontinuous slopes and ac-

counts for a nonlinear variation of pressures with sur-

face slope. Thus, the evaluation code must be given

the greater credence in any search for optimum flap

systems. Nevertheless, the close correlation between

design- and evaluation-code results helps to establish

confidence in the suggested flap-design process.

Figure 36 shows data for the best of the tested
leading- and trailing-edge flap deflection combina-

tions at off-design Mach numbers of 0.3 and 0.7. In

neither case is there any appreciable deterioration in

the ability of the linearized-theory code to predict
the measured characteristics. This good correlation

is in contrast with higher Mach number data for other

configurations treated in this study, notably the 44%

swept trapezoidal-wing fighter. It is likely that the

linearized-theory methods are valid up to, but not
beyond, the drag-rise Mach number.

Conclusions

An analysis of the subsonic aerodynamic perfor-

mance of simple hinged-flap systems for a variety of

thin, swept-wing, wing-body combinations has led to

the following conclusions.

1. Linearized-theory, attached-flow, computer-code

methods (with estimated attainable leading-edge

thrust and an approximate representation of vor-
tex forces) provide a rational basis for the estima-

tion and optimization of flap-system aerodynamic

performance at subsonic speeds below the drag-
rise Mach number.

2. Optimization of flap-system aerodynamic per-
formance requires specified deflections of both

leading-edge and trailing-edge flaps which can be

predicted with reasonable accuracy by the numer-

ical methods. Near-maximum performance, how-

ever, can be achieved over a fairly broad range of

deflection-angle combinations.

3. Generally, good prediction of aerodynamic per-

formance as measured by the suction parameter

can be expected for near-optimum combinations

of leading- and trailing-edge flap deflection at a

given lift coefficient; these conditions tend to pro-
duce a predominantly attached flow. Poor corre-

lation of code results and experimental data may
be experienced for undeflected flaps at high lift

coefficients and for highly deflected flaps at low

lift coefficients; these conditions tend to promote

severe flow separation without reattachment.

4. Code prediction of the aerodynamic efficiency of

flap systems is equally valid for sharp and rounded

leading-edge wing sections.

5. This analysis indicates that vortex-flap design and

attached-flow design are not opposing approaches,

but are closely related. The successful vortex-

flap design actually suppresses the formation of

detached vortices to produce a small vortex which

is restricted almost entirely to the leading-edge

flap itself.

Performance degradation brought about by low
Reynolds numbers and high Mach numbers was not

investigated in this study. The conclusions are thus

restricted to Mach numbers below the drag rise and

Reynolds numbers sufficiently high to avoid drastic

flow separation at or near design conditions.

NASA Langley Research Center
Hampton, VA 23665-5225
August 18, 1988
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Appendix A

Description of Wing-Design Computer
Code

The wing-design code introduced in reference 3

generates an optimized twisted and cambered lift-

ing surface for a given wing planform operating at

specified flight conditions, provides the correspond-

ing lifting-pressure distribution, and gives wing force

and moment data. The code provides an analysis

of the designed surface and may be operated in an

analysis-only mode. Supersonic and subsonic speeds

can be handled, but it is not a transonic code. Be-
cause the solution is based on the use of candidate

surfaces, it can provide a twisted and cambered sur-

face restricted to specified wing regions (a mission-

adaptive design) as well as a whole-wing design. This

code has recently been modified to provide for the

selection of spanwise flap deflection schedules which

would approximate the surface and loadings of the

optimized restricted-area design.
The numerical method is based on linearized-

theory, potential-flow solutions for a zero-thickness

lifting surface represented by an array of horseshoe

vortices. A solution by iteration rather than by a

matrix inversion is used. The code also provides for

an estimate of attainable leading-edge thrust and of

the forces caused by separated leading-edge vortices.

Attainable leading-edge thrust considerations play a

direct part in the design process, but vortex-force

estimates do not, except for a reduction of design lift

coefficient (and camber-surface severity) caused by
the vortex-lift contribution.

The computer code

WINGDES2--Wing-Design and
Analysis Code

may be obtained for a fee from:

COSMIC

Computer Services Annex

University of Georgia

Athens, GA 30602

(404) 542-3265

Request the code by the designation LAR-13995.
This code is written in FORTRAN V for use on

the Control Data 6600 computer system and on the
Control Data Cyber series.

The first record in the input is a code run iden-

tification that accepts up to 80 characters. The re-
mainder of the input is placed in NAMELIST format
under the name INPT1.

The wing-planform information is specified by a

series of leading-edge and trailing-edge breakpoints
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for a right-hand wing panel. Up to 21 pairs of

coordinates may be used to describe the leading edge

and up to 21 pairs to describe the trailing edge. The

planform input data in program terminology are as
follows:

NLEY number of leading-edge breakpoints

(limit of 21)

TBLEY table of leading-edge y-values;

beginning at y = 0; increasing order

of y from root to tip

TBLEX table of leading-edge x-values that

corresponds to TBLEY table

NTEY number of trailing-edge breakpoints

(limit of 21)

TBTEY table of trailing-edge y-values;

beginning at y = 0; increasing order

of y from root to tip

TBTEX table of trailing-edge x-values that

correspond to TBTEY table

XMAX largest x-ordinate anywhere on
plan form

SREF wing reference area for use in

aerodynamic force and moment
coefficients

CBAR

XMC

wing reference chord for use in

aerodynamic moment coefficients

x-location of moment reference
center

ELAR element aspect ratio

For flat and mildly cambered wings, an element

aspect ratio approximately one-half the full-wing as-

pect ratio is recommended. For wings with small

chord leading-edge or trailing-edge design areas it

may be necessary to use a large element aspect ratio
to place at least two elements within the chord. The

number of elements in a given chord, cL or CT, may
be approximated as

X = _(JBYMAX) (ELAR)o,,/

or

CT (JBYMAX)(ELAR)
N=b-- _

Because computational costs tend to increase as the

fourth power of JBYMAX and the second power of

ELAR, an increase in the element aspect ratio is

the more efficient means of providing for improved

definition. At supersonic speeds, where ELAR is set



to 1/_, the only recourse is to increase JBYMAX.
This parameter controls the size of the wing in code
dimensions.

JBYMAX integer designating number of
elements in spanwise direction

(limit of 30)

The necessary scaling is done within the code by

use of a scale factor 2(JBYMAX)/(SPAN (/3)). The

number of complete wing elements N corresponding

to a given JBYMAX may be approximated as

N = 4(JBYMAX 2) (ELAR
\ AR /

The code has been written to accommodate 500

right-hand panel elements. Generally, the JBYMAX

integer is less than the limit of 30. The normal

range is 8 to 15 for subsonic speeds and 20 to 30

for supersonic speeds. Computational costs tend to
increase as the square of the number of elements.

The wing mean-camber surface may be specified

by a set of tabular entries. However, if a fiat-wing

analysis is to be performed or if a flat wing is to be

used as the initial surface in a design process, these

entries are not required. If a wing surface is input,

the section mean-camber surface must be specified

by exactly 26 chordwise ordinates at up to 32 span
stations. When fewer than 26 camber coordinates are

used to define the sections, the ordinate tables must

be filled with enough zeros to complete the list of 26.

The necessary section information is as follows:

NYC

TBYC

NPCTC

TBPCTC

number of spanwise stations at
which chordwise sections are used

to define mean-camber surface

(limit of 32)

table of y-values for chordwise

camber-surface sections; beginning

at y = 0; increasing order of y from

root to tip

number of chordwise stations used

in definition of mean-camber surface

(limit of 26)

table of chordwise stations, in per-

cent chord, at which mean-camber-

surface ordinates are defined; in-

creasing order from leading edge to

trailing edge

TZORDC

TZSCALE

table of mean-camber-surface

z-ordinates that correspond to

TBPCTC table; the full 26 values

for root chord (including zeros

for values in excess of NPCTC)

are given first, followed by similar

information for all spanwise stations
in increasing order of y

multiplying factor applied to

TZORDC table to change camber-
surface ordinates

The TZORDC table may be multiplied by a scale

factor TZSCALE. This factor may be useful if the

original tabulated ordinates are nondimensionalized

with respect to a single measurement (e.g., the wing

root chord) or if it is necessary to evaluate the effect

of change in camber-surface severity.

The following wing-section information is re-

quired for the calculation of attainable leading-edge

thrust and leading-edge separation forces:

NYR

TBYR

TBTOC

TBETA

TBROC

IVOROP

number of spanwise stations at
which information on airfoil sections

is supplied (limit of 21)

table of y-values for airfoil section

information; beginning at y -_ 0;

increasing order of y-values from
root to tip

table of airfoil maximum thickness

as a fraction of chord, t/c

table of section locations of max-

imum thickness as a fraction of

chord, _7

table of leading-edge radii as a

fraction of chord, r/c

vortex location option as follows:

YAPEX

0 full vortex force acts normal to

wing reference plane at wing

leading edge; does not contribute to
axial force

1 vortex center given by empirical

relationships derived from delta-

wing experimental data (default)

2 vortex center given by method of

Lan (ref. 14)

spanwise location of vortex flow-

field origin
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Forspecialplanformssuchas
forward-sweptwingsor other
wingswith anapexawayfrom
thecenterline,this input canhelp
providea betterestimateof vortex-
inducedflowfieldsandforces.The
defaultis YAPEX= 0.0.

The flight or test conditionsare specifiedas
follows:

XM

RN

NALPHA

TALPHA

free-streamMachnumber

free-streamReynoldsnumber
(basedon_) X 106

numberof anglesof attackto be
calculated(limit of 19)

tableof anglesof attackto be
calculated,deg

The commonlyacceptedpracticeof performing
subsoniccalculationsfor a Machnumberof 0.0 is
not appropriatefor this code. Realisticestimates
of attainablethrust canbemadeonly if both the
Machnumberandthe Reynoldsnumbercorrespond
to actualconditions. In fact, the codestopsand
writesan errormessagewhenXM = 0.0 is input.
A widerangeof angleof attackis requiredin order
to usethecodein thedesignmode.Thisrangemust
covertheangleofattackfor CL,de s of the original and
all subsequent surfaces. An error message is written

when the angle-of-attack range is too small.

To determine perturbation velocity distributions
for the input camber surface, the flat-wing surface at
1 ° angle of attack, and the candidate camber surfaces

used in the design mode, a maximum of 70 iterations

are provided. If this number is reached without

the convergence criteria being met, the results for

the 70th iteration are printed with an appropriate

message. The maximum number of iterations may

be changed by the entry

ITRMAX maximum number of perturbation

velocity iterations (default 70)

The code convergence criteria are met when, for

all wing surfaces, the average difference in pertur-
bation velocity between successive iterations is less

than half of one percent of the average velocity over

the wing. If the average velocity for any of the wing

surfaces is less than the average velocity for the flat

surface at _ = 1°, the flat-wing surface value is used

instead. In many instances, these criteria may be

more stringent than necessary. If desired, the con-

vergence criteria may be changed by the entry
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CNVGTST perturbation velocity convergence

criteria (default 0.005)

The following entries control the solution for the

optimized surface in the program design mode. For

the analysis of a specified wing surface, omit these
entries.

CLDES design lift coefficient (if CLDES is
not specified, the code defaults to

CLDES = 0.0, which triggers an

analysis-only solution)

CMDES design pitching-moment coefficient

(if CMDES is not specified, the

code defaults to CMDES = 1000.0,

which triggers an optimization

solution without moment restraint)

IFLPDES flap-design index (set this index
to 1 if the code is to be used to

define a spanwise distribution of

leading- and trailing-edge flap

deflections which approximate

the designed camber surface; use

this option only for a design in

which leading- and trailing-edge

modification surfaces are specified;

code defaults to an index of 0,
which bypasses the flap-design

feature)

Use of the flap-design index, IFLPDES = 1, auto-

mates a graphical flap-fitting technique described in

reference 2. The technique may be described with

the aid of figure 37. When the flap-design feature is

to be used, leading-edge and/or trailing-edge modi-
fication surfaces must be employed and NGCS must
be set to zero. The chords of these surfaces should

be input as the chords of the flaps themselves. The

code then designs a restricted-area camber surface

for leading- and trailing-edge areas whose chords are

set to 1.5 times the flap chords. The original cam-

ber surface (a flat surface or a milder camber design

such as for supersonic cruise) is then superimposed
by rotation and translation on the new design. Differ-

ences in leading- and trailing-edge ordinates are then

used to calculate flap deflections which approximate

the designed camber surface. It must be emphasized
that the flap deflections thus obtained are not nec-

essarily optimum deflections, but only approxima-

tions. Iterative use of the companion evaluation code

can help provide a better estimate of true optimum
deflections.

In attempting to meet the convergence criteria
for wing design, the code provides for a maximum
of 20 iterations. If this number is reached without



the convergencecriteria beingmet, the resultsfor
the20th iterationareprintedwith a warningof the
failureto meetthecriteria.If desired,themaximum
numberof designiterationsmay be increasedor
decreasedbytheentry

ITRDESM maximumnumberofdesign
iterations

Theuserhasnocontroloverthedesignconvergence
criteria.

The remainderof the design-modeentriesare
optional. Thesecanbevaluablefor programuser
controlof the designprocessbut arecoveredby
programdefaultsif the userchoosesnot to exercise
theoptions.

The usermayselectthenumberof generalcam-
bersurfacesto beusedin theoptimizationprocess.
Thesesurfacesaredescribedin reference3.

NGCS numberof generalcambersurfaces
coveringtheentirewing(limit of 8,
default8)

In addition,the usermayselectexponentsthat
controlthe shapeof the varioussurfacesby useof
thefollowingentries:

EXPY1}
EXPY2
EXPY3
EXPY4

EXPX1/EXPX2

exponentsof y used in defini-

tion of general camber surfaces

(defaults: EXPY1 = 0.0,
EXPY2 = 1.0, EXPY3 = 2.0,

and EXPY4 = 3.0)

exponents of x t used in defini-

tion of general camber surfaces

(defaults: EXPX1 = 1.5,

EXPX2 = 2.0)

To preserve the original surface between the leading-

edge modification surfaces and the trailing-edge
modification surfaces for a mission-adaptive design,

NGSC may be set to zero. In this case, user options
for both leading-edge and trailing-edge modifications

must be employed.

The following entries control the region of the

wing affected by the leading-edge modification sur-

faces. Because wing aerodynamic performance is

critically dependent on the surface shape and pres-

sure loading in the leading-edge region, these surfaces
are essential to the optimization process. Program

defaults provide candidate surfaces which generally

provide a camber-surface design with good aerody-
namic efficiency. The program user, however, may

want to tailor a camber-surface solution more ap-

propriate to the problem at hand and may want to

search for solutions offering greater efficiency.

NLEC number of breakpoints used in defi-

nition of area of wing to be affected

by leading-edge modification sur-

faces (limit of 21, default 2)

TBLECY table of y-values at breakpoints

used in definition of area of wing

to be affected by leading-edge

modification surfaces; increasing

order of y from wing root to wing

tip (default 0.0, TBLEY (NLEY))

TBLEC table of cL values corresponding to

TBLECY table (default TBTEX(1) -

TBLEX(1) for both entries); see
note under ELAR entry regarding

definition of leading-edge areas; it

may be necessary to change ELAR

or to place limits on non-zero cL
values

The following entries control the region of the

wing affected by the trailing-edge modification sur-
faces and the streamwise section shape of these sur-
faces. The code defaults exclude these surfaces.

NTES number of trailing-edge modification

surfaces (limit of 4)

NTEC number of breakpoints used in

definition of area of wing affected

by trailing-edge modification

surfaces (limit of 21)

TBTECY table of y-values at breakpoints
used in definition of area of

wing affected by trailing-edge modi-

fication surfaces; increasing order of

y from root to tip

TBTEC table of c T values corresponding to
the TBTECY table; see note under

ELAR entry regarding definition

of trailing-edge areas; it may be

necessary to change ELAR or to

place limits on nonzero cT values

EXPXTE exponent of (x' - (c - CT) ) used in

definition of trailing-edge modifica-

tion surfaces (exponents of y are the
same as those used in definition of

general camber surfaces)

The following user option provides a degree of
control over the smoothness of the camber-surface
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solution.Code-determinedweightingfactorsfor the
leading-edgemodificationsurfacesaresubjectto nu-
mericalinaccuracieswhichmayproducez-ordinates

that do not have a smooth variation with respect to

the y-dimension. See pages 19 to 23 of reference 3 for

a discussion of the role of leading-edge modification

surfaces in the design process and of the selection

and use of leading-edge surface factors. By using

this option, the user may substitute a smoothed set

of leading-edge surface factors for the code-tabulated

values. With the present program, two runs are re-

quired; the first finds the nonsmoothed values, and
the second operates with the smoothed values.

IAFIX smoothing-operation indicator; set

IAFIX = 1 if smoothing is to be

employed (default 0)

TAFIX table of smoothed weighting factors

replacing code-generated table
in same order of increasing span
stations

A modification to the computer code now per-

mits the design of a wing lifting surface with flow

fields of other airplane components, such as fuselage,
nacelles, or canards, taken into account. This design

may be accomplished by the addition of a table de-

scribing the interference pressure distribution on the

wing surface generated by the other airplane compo-

nents. This pressure field and the surface on which

it acts, described by an existing input table, enter

into the optimization process, but, unlike the other

surfaces and loadings, remain unchanged throughout

the design.

The interference pressure field must be supplied

by the user. Normally, it is found by the use of
some other aerodynamic analysis program capable

of handling the desired airplane components. In

most cases, two computer runs of this other program

are required; one has all the airplane components

represented, and one has only a mean-camber surface

that matches as closely as possible the fixed input

camber surface (surface 1) of the wing-design code.

The wing-design code interference pressure field is
then defined as the difference between these two

loadings. By using the appropriate wing-design code

options, the design surface may include only the

wing outboard of the wing-fuselage juncture or may

include the complete lifting surface, in which case a

new fuselage camber surface is generated.

The following additional input data provide for a

wing design with other airplane component-induced

pressure fields taken into account. For normal pro-

gram operation, simply omit these entries. If an

interference pressure field is input, the distribution
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must be specified by exactly 26 chordwise positions

at up to 32 span stations. When fewer than 26 chord-

wise positions are used to define the interference pres-

sure field, the ACp table must be filled with enough

zeros to complete the list of 26.

ICP

NYCP

TBYCP

NPCTCP

TBPCTCP

TCP

YFUS

other airplane component-induced

pressure field indicator; set ICP = 1

if this option is used (default 0)

number of spanwise stations at
which chordwise sections are used

to define interference pressure field

(limit of 32)

table of y-values for interference

pressure field chordwise sections;

beginning at y = 0; increasing order

of y from root to tip

number of chordwise stations

used in interference pressure field

definition (limit of 26)

table of chordwise stations, in per-

cent of chord, at which interference

pressure field distributions are de-

fined; increasing order from leading

edge to trailing edge

table of interference pressure

field coefficients corresponding to

TBPCTCP table; full 26 values

for root chord (including zeros

for values in excess of NPCTCP)

are given first, followed by similar

information for spanwise stations in

increasing order of y

spanwise station of wing-fuselage

juncture; this entry limits wing

general camber surfaces to values

of y greater than that specified;

leading- and trailing-edge camber

surfaces may be limited by existing

options; use of these limitations

yields a design lifting surface

confined to wing outboard of

fuselage (default 0.0}

The code is constructed so that successive runs

may be made with a given code entry. To make ad-

ditional runs, it is only necessary to add an iden-
tification record and namelist data that are to be

changed from the previous run. An additional capa-

bility is provided by the entry NEWDES. When the

code is run in the design mode and NEWDES is set
to 1, a design camber surface is found, the input set



of camber-surfaceordinatesis replacedby camber-
surfaceordinatesfor thenewdesign,andthis new
designis treatedasanevaluationcase.In theorigi-
nal code,the defaultfor theentryNEWDESwas0,
whichprovidedfor adesignof thewingsurface,but
not for a subsequentevaluation.Now,however,be-
causethisfeaturehasbeenfoundto besouseful,the
defaulthasbeenchangedto NEWDES= 1. When
theNEWDESoptionisused,successiverunsmaybe
employedto evaluatethe newsurfaceat off-design
conditions.

The wing-design camber-surface ordinates are

printed for a reference angle of attack defined by

an entry of ALPZPR (reference angle of attack) or

CLZPR (reference lift coefficient). The default is

ALPZPR = 0.0. When CLZPR is specified, the code

calculates the corresponding ALPZPR and uses it in
the determination of ordinates.

If the code user desires, span load distribution

data may be printed. If the index IPRSLD is set

to 1, section aerodynamic characteristics, including

the separate contributions of basic pressure loadings,

attainable thrust, and vortex forces for each entry

in the angle-of-attack table, are printed. These data

are printed only for the evaluation mode or when the

NEWDES option is used in the design mode.

The printed code results include the following:

1. An iteration-by-iteration history of the conver-

gence parameters for the longitudinal perturbation

velocity solution. In the design mode, data are given

only for the most critical surface of up to 44 surfaces

which may be used and for the flat surface at _ = 1°.
For the supersonic solution in which iteration is not

used, this printout is omitted.

2. A listing of the spanwise distribution of the

leading-edge surface factor, the angle-of-attack range
for full thrust, and the angle of attack for zero thrust.

These data are given for the evaluation mode and

for all iterations in the design mode from the first

(input surface) to the last (optimized surface). For

the evaluation mode, leading-edge surface factors are
all zero.

3. A listing of overall wing aerodynamic charac-

teristics as a function of angle of attack. These data

are given for the evaluation mode and for all itera-

tions in the design mode from the first (input surface)

to the last (optimized surface).

4. A listing of the spanwise distribution of wing-

section aerodynamic characteristics, including the

separate contributions of basic pressure loadings,
attainable thrust, and vortex forces. These data

are given only for the evaluation mode (or when the
NEWDES option is used in the design mode), and

are given only if the print option IPRSLD is set to 1.

5. A listing of the wing-surface ordinates as a

function of chord position for each of the span sta-

tions used in the program solution.

6. Listings of pressure distributions for the cam-
ber surface at _ = 0 ° and for the flat surface at

_-I °.

7. A listing of the leading-edge factors used in the

design and a listing of suggested replacement values

which may lead to improved performance when the

NEWDES option is used. Generally, the need for

this replacement arises only when it has not been

possible to provide a sufficiently detailed numerical

representation of the wing to give closely matched

aerodynamic characteristics in the design and evalu-
ation modes.

8. A listing of a suggested spanwise distribution

of flap deflection angles to approximate the designed
camber surface and to approach its aerodynamic

performance when the IFLPDES option is used and

flap chord information is supplied.
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Appendix B

Description of Flap-System Analysis Code

The wing-analysis code described in reference 4

provides lifting-pressure distributions and wing

forces and moments for a given camber surface. It

provides only an analysis mode and is applicable

only to subsonic speeds, but it provides for special

handling of flap systems, including simplified flap-

geometry input and computed results for various

combinations of leading-edge and trailing-edge flap

deflections in a single run. This code has recently

been modified to provide for an improved account-

ing of the effect of hinge-line singularities in a man-

ner similar to that for the leading-edge singularities

which were handled in the original method.
The numerical method is based on linearized-

theory, potential-flow solutions for a zero-thickness
lifting surface represented by an array of horseshoe

vortices. A solution by iteration rather than by a

matrix inversion is used. The code also provides for

an estimate of attainable leading-edge thrust and of

the forces caused by separated leading-edge vortices.

The computer code

SUBAERF2--Wing and Flap-System

Analysis Code

may be obtained for a fee from:

COSMIC

Computer Services Annex

University of Georgia

Athens, GA 30602

(404) 542-3265

Request the code by the designation LAR-13994.
This code is written in FORTRAN V for use on

the Control Data 6600 computer system and on the

Control Data Cyber series.

The first record in the input is a code run iden-

tification that accepts up to 80 characters. The re-

mainder of the input is placed in NAMELIST format
under the name INPT1.

The wing-planform information is specified by a

series of leading-edge and trailing-edge breakpoints

for a right-hand wing panel. Up to 21 pairs of

coordinates may be used to describe the leading edge

and up to 21 pairs to describe the trailing edge. The

planform input data in program terminology are as
follows:

NLEY

TBLEY

number of leading-edge breakpoints

(limit of 21)

table of leading-edge y-values;

beginning at y = 0; increasing order
of y from root to tip
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TBLEX

NTEY

TBTEY

TBTEX

XMAX

SREF

CBAR

XMC

ELAR

table of leading-edge x-values that

correspond to TBLEY table

number of trailing-edge breakpoints

(limit of 21)

table of trailing-edge y-values;

beginning at y = 0; increasing order

of y from root to tip

table of trailing-edge x-values that

correspond to TBTEY table

largest x-ordinate anywhere on

planform

wing reference area for use in

aerodynamic force and moment
coefficients

wing reference chord for use in

aerodynamic moment coefficients

x-location of moment reference

center

element aspect ratio

For flat and mildly cambered wings, an element

aspect ratio approximately one-half the full-wing as-

pect ratio is recommended. For small chord leading-

edge or trailing-edge flaps it may be necessary to use

a large element aspect ratio to place at least two ele-
ments within the chord. The number of elements in

a given chord, c L or CT, may be approximated as

N = _-_2 (JBYMAX)(ELAR)

or

N = _2 (JBYMAX)(ELAR)/

Because computational costs tend to increase as the

fourth power of JBYMAX and the second power of

ELAR, an increase in the element aspect ratio is

the more efficient means of providing for improved
definition.

The size of the wing in code dimensions is con-

trolled by the entry:

JBYMAX integer designating number of

elements in spanwise direction

(limit of 41)

The necessary scaling is done within the code by

use of a scale factor 2(JBYMAX)/(SPAN(fl)). The



numberof completewingelementsN corresponding

to a given JBYMAX may be approximated as

N = 4(JBYMAX 2) (ELAR
\ AR /

The code has been written to accommodate 2000

right-hand panel elements. Generally, the JBYMAX

integer is much less than the limit of 41. The

normal range is 8 to 20. Computational costs tend

to increase as the square of the number of elements.

The wing mean-camber surface must be specified

by exactly 26 chordwise ordinates at up to 21 span
stations. When fewer than 26 camber coordinates are

used to define the sections, the ordinate tables must

be filled with enough zeros to complete the list of 26.

The necessary section information is as follows:

NYC

TBYC

NPCTC

TBPCTC

TZORDC

TZSCALE

number of spanwise stations at
which chordwise sections are used

to define mean-camber surface

(limit of 21)

table of y-values for chordwise

camber-surface sections; beginning

at y = 0; increasing order of y from

root to tip

number of chordwise stations used

in definition of mean-camber surface

(limit of 26)

table of chordwise stations, in per-

cent chord, at which mean-camber-

surface ordinates are defined; in-
creasing order from leading edge to

trailing edge

table of mean-camber-surface

z-ordinates that correspond to

TBPCTC table; the full 26 values

for root chord (including zeros

for values in excess of NPCTC)

are given first, followed by similar

information for all spanwise stations

in increasing order of y

multiplying factor applied to

TZORDC table to change camber-
surface ordinates

The TZORDC table may be multiplied by a scale

factor TZSCALE. This may be useful if the original
tabulated ordinates are nondimensionalized with re-

spect to a single measurement (e.g., the wing root

chord) or if it is necessary to evaluate the effect of

change in camber-surface severity.

The following wing-section information is re-

quired for the calculation of attainable leading-edge

thrust and leading-edge separation forces:

NYR

TBYR

TBTOC

TBETA

TBROC

IVOROP

number of spanwise stations at
which information on airfoil sections

is supplied (limit of 21)

table of y-values for airfoil section

information; beginning at y = 0;

increasing order of y-values from

root to tip

table of airfoil maximum thickness

as a fraction of chord, tic

table of section locations of max-

imum thickness as a fraction of

chord, rj

table of leading-edge radii as a

fraction of chord, r/c

vortex location option as follows:

0 full vortex force acts normal to

wing reference plane at wing

leading edge; does not contribute
to axial force

1 vortex center given by empirical

relationships derived from delta-

wing experimental data (default)

2 vortex center given by method of

Lan (ref. 14)

YAPEX spanwise location of vortex flow-

field origin

For special planforms such as

forward-swept wings or other

wings with an apex away from

the centerline, this input can help

provide a better estimate of vortex-
induced flow fields and forces. The
default is YAPEX = 0.0.

The flight or test conditions are specified as
follows:

XM

RN

NALPHA

TALPHA

free-stream Mach number

free-stream Reynolds number

(based on _) x 106

number of angles of attack to be

calculated (limitof 19)

table of angles of attack to be

calculated,deg
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NADRN number of additional Reynolds
numbers

TADRN table of additional Reynolds

numbers (based on _) × 106 (limit

of 3)

The commonly accepted practice of performing
subsonic calculations for a Mach number of 0.0 is

not appropriate for this code. Realistic estimates

of attainable thrust can be made only if both the

Mach number and the Reynolds number correspond
to actual conditions. In fact, the code stops and

writes an error message when XM = 0.0 is input.

The following information makes possible the cal-

culation of loadings and forces on deflected leading-

edge and trailing-edge flaps. If flap data are not de-

sired, simply omit these entries.

NLEFY

TBLEFY

TBLEFC

TBLEFD

NADLEFD

TXMLEFD

LEFTYPE

number of breakpoints in leading-

edge flap chord distribution (limit

of 20)

table of y-values at breakpoints in

leading-edge flap chord distribution;

beginning at y = 0; increasing order

of y from root to tip

table of leading-edge flap chords

corresponding to TBLEFY table

table of flap deflections in degrees

(positive for leading edge down)
corresponding to TBLEFY table

number of leading-edge flap

deflection multipliers other than

1.0 (limit of 4)

table of leading-edge flap deflection

multipliers (applied as a multiplier

of tangents of input flap deflections)

type of leading-edge deflection

1 linear (default)

8L, sJ

-£

2 parabolic
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NTEFY

TBTEFY

TBTEFC

TBTEFD

NADTEFD

TXMTEFD

CLDES

number of breakpoints in trailing-

edge flap chord distribution (limit

of 2o)

table of y-values at breakpoints in

trailing-edge flap chord distribution;

increasing order of y from root to

tip

table of trailing-edge flap chords

that correspond to TBTEFY table

table of flap deflections in degrees

(positive for trailing edge down)

that correspond to TBTEFY table

number of trailing-edge flap

deflection multipliers other than

1.0 (limit of 4)

table of trailing-edge flap deflection

multipliers (applied as a multiplier

to tangents of input flap deflections)

additional lift coefficient for which

flap-system aerodynamic perfor-

mance is to be specified; code aero-

dynamic characteristics are given

only for angles of attack in input
TALPHA table unless CLDES is

specified

Spanwise tables must begin with y = 0 and

extend to y = b/2 (with chords of 0 where there

are no flaps). At spanwise positions where there are

discontinuities in either flap chord or deflection, it

is necessary to make closely spaced tabular entries

inboard and outboard of the discontinuity.

The program requires flap-deflection angles mea-

sured in the x-z plane. Flap-deflection angles mea-

sured normal to the flap hinge line may be converted

to code input angles by

5L, s ----tan- 1 (cos Ah, L tan 5L,n)

ST, s = tan -1 (cos Ah, T tan ST,n)

The code provides solutions for wing surfaces

composed of all possible combinations of leading-

edge and trailing-edge flap settings provided by the

original deflections (TBLEFD and TBTEFD) and

by the flap-deflection multipliers (TXMLEFD and

TXMTEFD). Up to 25 pairs of leading-edge and
trailing-edge flap-deflection schedules may thus be

treated simultaneously. Solutions obtained by using

the multipliers (values other than 0 or 1) are deter-

mined by a perturbation process; thus, they are not



asaccurateassolutionsfortheoriginalornominalin-
putdeflections.Whenincreasedaccuracyisrequired,
or whenthechangein performancewith thechange
in deflectionmustbeevaluated--asin theconstruc-
tion of suction-parametercontourmaps individual
solutionswithoutrecourseto multipliersmaybere-
quired. Thereis, however,a strategythat maybe
usedto obtainasetofdatanearlyasaccurateasthe
codeis capableof providingwith theuseofonlytwo
coderuns.Theprocedureis illustratedin figure38.
First, a coderun is madefor leading-andtrailing-
edgeflapdeflectionsnearthemiddleof therangeof
interestwith additionalflapdeflectionmultipliersof
0, 0.5, 1.5,and2.0. A secondrun is thenmadefor
input deflectionswhosetangentsaretwicethoseof
the originalinput deflections.For this run, the ad-
ditional flapdeflectionmultipliersare0, 0.25,0.50,
and0.75.Codedatafromthesetworunsmaythenbe
proportionedaccordingto thefactorsshownon the
twogridsin figure38.Forexample,for leading-and
trailing-edgedeflectionangles,both of whichhave
tangentsthat are1.5timestheoriginaldeflectionan-
gles,thecorrectedsuctionparameterwouldbe the
sumof0.72timesthefirst setofresultsfor factorsof
1.5and 1.5and0.28timesthesecondsetof results
for factorsof 0.75and0.75.Thesefactorshavebeen
determinedempiricallyfroma fairly extensiveexer-
cisein graphicalanalysis.A singlerunprovidesfour
validsolutions(forfactorsof 0,0,0,1,1,0,and1,1).

The revisedcodeprovidesfor an improvedac-
countingof hinge-linesingularitiesin determination
of wing forcesand moments.The techniqueused
is illustrated in figure 39. In the original code
(ref. 15),only wingswith smoothcambersurfaces
weretreated,andtherewasno provisionfor flaps.
Thesolutionforawingatanangleofattackwascom-
posedof two parts,a fiat-surfacecomponentanda
camber-surfacecomponent.Toprovideanappropri-
ateintegrationtechniqueforthecamber-surfacecom-
ponent,the pressuredistributionwasdividedinto
two parts--onewith a leading-edgesingularityand
onewith nosingularityanda smoothvariationfrom
leadingedgeto trailingedge.As describedin refer-
ence15,a curve-fitand integrationformulaappro-
priateto eachcontributionwasemployed.Thepro-
cessworksquitewell for a smoothcambersurface,
evenif the surfaceis inclined,to producesubstan-
tial leading-edgeloading.Whentheprogramwasex-
pandedto cover leading- and trailing-edge flaps, two

new surfaces were added, but the fairing and integra-

tion techniques were not changed. The flap-surface

loadings were simply added to the existing camber-

surface component. Thus, the fairing for a case with

leading- and trailing-edge flaps and a z = 0 camber

surface would appear as shown at the top of figure 39.

As can be seen, the code fairing is not well suited to

the character of the flap loadings. In spite of this

handicap, acceptable results were obtained when a
sufficient number of chordwise elements were used.

However, there is a tendency for part of the singular-

ity loading to be lost in the integration process.

To provide a partial remedy, the adjustment pro-

cedure illustrated in the middle portion of figure 39

is now used. The adjustment is made only to the

leading- and trailing-edge flap-surface contributions

to the camber-surface pressure distributions. A curve
of the form

ACp = klg_ - 1 +
k2

 /IXh -- x'l

is fitted to data for a given element and for the pre-

ceding and following elements. The integrated area

under this curve is compared with the integrated area

under a linear fairing, and the difference is repre-

sented as a ACp adjustment extending over the given

element. When this adjustment is made for all the

chordwise elements, a revised distribution, as shown

at the bottom of figure 39, is obtained. The original

code integration procedures, when applied to the re-

vised distribution, account for the lost singularity ar-

eas and provide for an improved integration of forces
and moments.

To determine perturbation velocity distributions

for the cambered wing, the flat wing, and the two

flap surfaces, the code provides for a maximum of
70 iterations. If this number is reached without

the convergence criteria being met, the results for

the 70th iteration are printed with a warning of the
failure to meet the criteria. The maximum number

of iterations may be increased or decreased by the

entry

ITRMAX maximum number of per-

turbation velocity iterations

(default 70)

The code convergence criteria are met when, for

all four wing surfaces and for two successive itera-

tions, the average difference in perturbation velocity

between iterations is less than half of one percent of

the average velocity over the wing. If the average

velocity for the camber surface or either of the flap
surfaces is less than the average velocity for the flat

surface at c_ = 1°, the flat-wing surface value is used

instead. In many instances, these criteria may be

more stringent than necessary. If desired, the con-

vergence criteria may be changed by the entry

CNVGTST perturbation velocity convergence

criteria (default 0.005)

25



Theprintedcoderesultsincludethefollowing:
1. Aniteration-by-iterationhistoryoftheconver-

genceparameters.
2. A listing of theoreticalpressuredistributions

for the cambersurfaceat a --= 0 ° and for the flat

surface at a = 1°. For each of the program spanwise

stations (controlled by JBYMAX), interpolated or

extrapolated pressure coefficients are given for a set
of chordwise stations.

3. A listing of the spanwise distribution of sec-

tion normal, axial, and pitching-moment coefficients

for the cambered wing at a = 0 ° and for the flat

wing at a = 1°. The interference axial-force coeffi-

cient caused by the flat-surface loading acting on the

camber surface and the theoretical thrust parameters

Ct,F and azt are also printed.
4. A listing of wing overall theoretical aero-

dynamic coefficients CN, CA, Cm, CL, and CD with
no thrust and with full theoretical thrust as a func-

tion of angle of attack.

5. A listing of the spanwise distribution of the

flat-wing angle-of-attack range for full theoretical
leading-edge thrust.

6. A listing of wing overall estimated aero-

dynamic coefficients, including CN, CA, and Cm

for the basic pressure loading, AC N and AC A for

attainable thrust and vortex-force increments, and

CN, CA, Cm, CL, CD, and Ss for the total loading.

Additional printed output data may be selected

by using the following print options:

IPRCPD = 1

IPRSLDT = 1

IPRSLDA = 1

IPRALL = 1

theoretical pressure distribu-

tions for each selected angle of
attack

theoretical span load distribu-

tion of CN, CA, Cm, CL, and

C D with no thrust and with
full theoretical thrust for each

selected angle of attack

estimated span load distribu-

tion of CN, CA, Cm, CL, and
C D with attainable thrust and
vortex-force effects for each

selected angle of attack

the preceding print control

options apply only to the

first set of flap deflections.
Select this option if the three

preceding options are to

apply to all flap deflection
combinations. Selection of

this option could result in a

very large volume of printed

output
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Appendix C

Notes on Computer-Code Application

Table I presents sample input data for the flap-

system analysis code for each of the test configura-
tions studied. The fuselage and the wing are repre-

sented in the planform submitted to the code. The

camber ordinates, TZORDC, were determined from

the mean ordinates of both the wing and fuselage.

As with any numerical solution of mathemati-

cal theory, the problem is to find a sufficiently de-

tailed discretization which provides accurate answers

without incurring prohibitive costs. To sufficiently

represent the flap geometry of the study configura-

tions, the number of semispan elements, JBYMAX,

and the element aspect ratio, ELAR, were chosen

so that, for the most part, two or more elements

would be contained in any given flap chord. This

resulted in element aspect ratios ranging from 2.0

to 4.0 and from 8 to 10 semispan elements. Gener-

ally, the whole-wing-body planform was represented

by 500 to 600 elements.

To obtain estimates of attainable leading-edge

thrust Reynolds number, RN × 106, and Mach num-

ber, XM, are both specified and the wing-section geo-

metric characteristics of t/c, r/c, and _/ are entered

in the appropriate tables. For evaluation of the esti-

mated forces caused by leading-edge vortex separa-

tion, the vortex location option IVOROP = 1 was
chosen. It has been found to be more accurate for

the conventional swept wings of this study than the

other two options.

The wing evaluation program has a feature which

permits simultaneous solutions for a number of com-

binations of leading- and trailing-edge flap deflec-

tions by use of a perturbation process. This time-

saving code option is sufficiently accurate for small

deflection angles (streamwise angles of about 15 ° or

less), but because of the large deflection angles of-

ten considered in this investigation and the need for
a high degree of accuracy, this feature was not used

to its full capacity. When required, individual com-

puter runs were performed for each pair of leading-

and trailing-edge deflections; however, it should be

noted that a single computer run can be made to

yield as accurate a prediction as the method is capa-

ble of for a set of four deflection-angle combinations

which include zero deflections of leading-edge and
trailing-edge flaps. The code input data of table I

provide for flap deflection multipliers, TXMLEFD

and TXMTEFD, of 0.0, which produces results for

a leading-edge flap deflection with no trailing-edge

flap deflection, a trailing-edge flap deflection with

no leading-edge flap deflection, no leading-edge flap

deflection with no trailing-edge flap deflection, and

the leading-edge and trailing-edge flap deflections in

combination. For the construction of performance

maps, multiple deflection solutions using a strategy

discussed in appendix B were employed.

Also, the input data of table I provide for a

second computer run in which only the leading-

edge deflection and/or the trailing-edge deflection are
changed. It is unnecessary to repeat the other data.

Table II presents sample input data for the wing-

design code for the two configurations of this study

that were subjected to a design process. For each of

these configurations, both a whole-wing area design

and a restricted-area wing design are illustrated. The

NEWDES : I option was used to provide an analysis

of the designed surface. This is now the code default

option. As for the flap-system analysis inputs, the

IVOROP = 1 option was used. As explained in

appendix A, the vortex-force estimates reduce the

severity of the designed camber surface, because of

the vortex-lift contribution, but play no other part

in the design.

For the whole-wing design cases, the leading-

edge modification surfaces were defined by the wing

planform itself, rather than by the more conservative

code default option, because of a small increase in

performance. In reference 3 it is suggested that the

user may wish to exercise control over the design

by selection of candidate surfaces and may want to
search for solutions offering greater efficiency.

For the restricted-area design cases, the

IFLPDES = 1 option was used to provide an

automated selection of flap deflection schedules as de-

scribed in appendix A. In these examples, the chords

of the leading-edge and trailing-edge modification

surfaces, TBLEC and TBTEC, were input as the ac-

tual flap chords. The code automatically selects a

larger design area to be used in the definition of flap

surfaces. Also, an input camber surface, TZORDC,

is supplied rather than deferring to the code default,
which is a completely flat surface. This surface repre-

sents a supersonic cruise design. The code provides a

design that preserves the input surface, except in the

specified leading- and trailing-edge design areas. See

appendix A for a more detailed description of the de-

sign of mission-adaptive surfaces and of the selection
of flap deflections.
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Table I. Sample Input Data for SUBAERF2 Code

(a) Cranked-wing leading-edge fighter

SUPERSONIC CRUISE FIGHTER - CAMPBELL,TP 2687 - DLN=I5,DTN=IO

$1NPTI XM-O.50,RN'2.9,JBYMAX=8,ELAR=4.0,1VOROP-I,[PRSLDA "[ ,

SREF-163.5,CBAR-12.4,XMC-20.64,XMAX-33.50,

NLEY=8,TBLEY=O.OOO,O.470jO.870,1.160,I.190,1.200,5.510,9.550,

TBLEX-O.O00,2.000,4.000,6.000,6.540,12.88,26.37,27.84,

NTEY=4,TBTEY-O.O00,1.200,1.210,9.550,

TBTEX-33.50,33.50,31.70,29.79,

NYC-2,TBYC-0.OO,9.55,NPCTC-2,TBPCTC-O,OO,IOO.O,TZORDC=52*O.O,

NYR-3,TBYR-O.O0,1.20,9.55,

TBTOC'.000,.040,.040,

TBROC-.O00,.O01,.O01,

TBETA-.500,.500,.500,

NLEFY-5,TBLEFY-0.O00,1.200,4.630,5.510,9.550,

TBLEFC-O.O00,O.O00,3.310,1.080,.4870,

TBLEFD-O.OOO,4.252,4.252,14.67,14.67,

NTEFY-4,TBTEFY-O.O00,1.540,1.550,9.550,

TBTEFC=O.O00,O.O00,1.658,.4870,

TBTEFDlO.O00,O.O00,9.972,9.972,

NADLEFD-I,TXMLEFD-O.O00,

NADTEFD-I,TXMTEFD'O.O00,

NALPHA-14,TALPHA--6.,-4._-2.,O.O,2.,4.,6.,8.,IO.,12.,14.,16.,

18.,20., $

SUPERSONIC CRUISE FIGHTER - CAMPBELL,TP 2687 - DLN-15,DTN-20

$1NPTI TBTEFD-O.O00,O.O00,19.94,19.94, $

(b) Vortex-flap wing-body configuration

VORTEX FLAP MODEL - FRINK, TP 2686 - DLN-45,DTN-20

$1NPTI XM=O.40,RN-5.4,JBYMAX-8,ELAR-2.5,1VOROP'I,IPRSLDA=I,

SREFs550.32,CBAR-25.96,XMC=31.36,XMAX-47.58

NLEY-7,TBLEY-O.O00,1.500,4.440,6.620,8°650,10.90,13.62,

TBLEE-O.OO0,14.36,20.35,26.10,31.85,38.84,47°58,

NTEY-2,TBTEY_O.O00,13.62,

TBTEXI47.58,47.58,

NYC-2,TBYC-O.O,13.62,NPCTC=2,TBPCTC-O.O,IOO.O,TZORDC-52*O.O,

NYR-6,TBYR-O.OO00,1.5000,4.4100,6.6200,8.6500,13.620,

TBTOC-O.O000,.OI880,.02290,.02910,.03970,.03970,

TBROC-.O0000,.O0006,.O0007,.O0009,.O0013,.O0013,

TBETA-O.5000,O.1800,O.4000,O.5800,O.8700,O.5000,

NLEFY-7,TBLEFY-O.O00,1.500,4.440,6.620,8.650,10.90,13.62,

TBLEFC-O.O00,O.O00,4.710,6.570,7.900,8.740,O.O00,

TBLEFD=O.O00,15.41,15.41,15.41,15.41,15.41,15.41,

NTEFY=6,TBTEFY=O.O00,1.490,1.500,8.770,8.780,13.62,

TBTEFC=O.O00,O.O00,2.000,2.00O,O.O00,O.O00,

TBTEFD-O.O00,O.O00,20.O0,20.O0,O.O00,O.O00,

NADLEFD-I,TXMLEFD-O.O,

NADTEFD-I,TXI_TEFD-O.0,

NALPHA-14,TALPHA--6.,-4.,-2.,0.,2.,4.,6.,8.,IO.,12.,14.,16.,

18.,20., $

VORTEX FLAP MODEL - FRINK, TP 2686 - DLN=45,DTN=IO

$1NPTI TBTEFD..O.O00,O.O00,10.O0,10.O0,0.O00,O.O00, $
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Table I. Continued

(c) 44°-swept trapezoidal-wing fighter

44 DEG TRAPEZOIDAL WING FIG&TER - NICHOLAS, GD FZA 547 - DLN=20,DTN:20

$1NPTI XMs.40,RN'I.91,JBYMAX:IO,ELAR:2.5,1VOROP=I, IPRSLDA=I,

SREF=I60.O,CBAR=9.17,XMC:23.39,XMAX=38.03,

NLEY=4,TBLE¥=O.O00,1._OO,I-5OO,IO.O0,

TBLEX=O.O00,4.250,18.78,27.OO,

NTEY:4,TBTEY:O.O00,1.400,1.500,10.O0,

TBTEX=38.03,38.03_30.51,29.66,

NYC:2,TBYC=O.O,10.O,NPCTC=2,TBPCTC=O-O,IOO.O,TZORDC=52 *0.0,

NYR:3, TBYR:O.O00,1.5OO,10.O0,

TBTOC=.O000,.O600,.O400,

TBROC=.O000,.O025,.O011,

TBETA:.4OO0,.4OOO,.4000,

NLEFYz4,TBLEFY=O.OO,I.40,1.50,10.O,

TBLEFC_O.O0,O.OO,I.80,1.80,

TBLEFD=O.O0,O.00,14.7,14.7,

NTEFY=6,TBTEFY=O.O0,1.40,1.50,7.47,7.57,10.O,

TBTEFC=O.O0,O.OO,2.32,1.04,O-O0,O-O0,

TBTEFD-O.O0,O.O0,20.0,20.O,O-O0,O-O0,

NADLEFD:IjTXMLEFD=O.O0,

NADTEFD=I,TKMTEFD=O.O0,

NALPHA=I5,TALPHA:-4.0,-2.O,O.O,2.O,4-0,6-0,8.0,10-O,12.O,14-O, 16.O ,

18.0,20.0,22.O,2_.O, $

44 DEG TRAPEZOIDAL WING FIGHTER - NICHOLAS, GD FZA 547 - DLN:I2,DTN:I2

$1NPTI TBLEFD:O.OO,O.O0,8.69,8.69,8.69,

TETEFD=O.O0,O.O0,12.O,12.0,O.O0,O-O0, $

(d) 60°-swept delta-wing fighter

60 DEG DELTA GENERIC FIGHTER - NICHOLAS, GD FZA 547 - DLN=20,DTN:20

$1NPTI XM=.40,RN=2.52,JBYMAX:IO,ELAR_2.5,1VOROP:I,IPRSLDA=I,

SREF=ISI.94,CBAR_I2.13,XMC_23.7_,XMAX_4_.63,

NLEY=4,TBLEY=O.O00,1.400,1.500,10.O0,

TBLEX=O.O00,4.250,17.53,32.25,

NTEY=4,TBTEY=O.O00,1.400,1.500,10.O0,

TBTE×=41.63,41.63,33.00,32.25,

N¥C=2,TB¥C=O.O,IO.O,NPCTC=2,TBPCTC=O.O,IOO.O,TZORDC=52mO.O,

NYR=4, TBYR-O.O00,1.500,9.000,10.O0,

TBTOC=.O000,.O600,.0423,.04OO,

TBROC=.O000,.O025,.O013,.OO32,

TBETA=.4000,.4000,.4000,.4000,

NLEFY=5,TBLEFY=O.OO,I.40,1.50,8.50,10.O,

TBLEFC=O.O0,O.O0,1.37,2.62,0.O0,

TBLEFDsO.O0,O.O0,9.60,9.60,9,60,

NTEFY=6,TBTEF¥=O.O0,1.40,1.50,7.00,7.10,IO.O,

TBTEFC=O.O0,O.O0,1.69,1.21,O.O0,O.O0,

TBTEFD=O.O0,O.O0,20.O,20.O,O.O0,O.O0,

NADLEFD=I,TXMLEFD=OoO0,

NADTEFD=I,TXMTEFD:O.O0,

NALPHA-15,TALPHA:-4.0,-2.O,O.O,2.0,4.0,6.0,8.O,IO.O,12-O,14.0,16-O,

18.0,20.0,22.0,24.0, $

60 DEG DELTA GENERIC FIGHTER - NICHOLAS, GD FZA 547 - DLN=IO,DTN=IO

$1NPTI TBLEFD=O.O0,O.O0,4.68,4.68_4.68,

TBTEFD-O.O0,O.OO,IO.O,IO.O,O.O0,O.O0, $
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Table I. Continued

(e) Generic arrow-wing supersonic transport

SUPERSONIC TRANSPORT AST 200 - COE, TP 2176 - DLN=30,DTN=IO

$1NPTI XM=.25,RN=4.10,JBYMAX=IO,ELAR=2.0,1VOROP=I,IPRSLDA=I,

SREF_I291.9,CBAR=34.64,XMC_69.I,XMAX_97.94,

NLEY=5,TBLEY=O.O00,1.950,11.74,18.00,24.80,

TBLEX-O.O00,27.66,61.79,79.81,91.59,

NTEY=4,TBTEY-O.O00,8.280,13.61,24.80,

TBTE×=86.77,86.59,88.05,97.94,

NYC=2,TBYC=O.O,24.80,NPCTC=2,TBPCTC-O.O,IOO.O,TZORDC=52*O.O,

NYR=9,

TBYR =0.0000,1.9500,4.9600,8.2800,12.340,15.OO0,18.000,18.000,24.800,

TBTOC=O.O000,.03030,.O2770,.02570,.02570,.02770,.03OO0,.O2000,.02000,

TBROC=O.OO00,.O0064,.O0054,.O0046,.O0046,.O0054,.O0063,.O0030,.O0030,

TBETA=.40000,.40000,.40000,.40000,.40000,.40000,.40000,.50000,.50000,

NLEFY=7,TBLEFY=O.O0,1.85,1.95,11.7,16.7,18.0,24.8,

TBLEFC=O.O0,O.O0,10.6,4.40,4.29,2.62,1.92,

TBLEFD=O.OO,O.O0,10.8,10.8,10.8,16.1,16.1,

NTEFY=IO,TBTEFY=O.O0,2.30,2.40,6.23,6.33,9.37,9.47,12.0,12.1,24.8,

TBTEFCsO.O0,O.O0,4.75,4.65,0.O0,O.O0,4.95,5.60,O.OO,O.O0,

TBTEFD=O.O0,O.O0,10.O,IO.O,O.O0,O.OO,IO.O,IO.O,O.O0,O.O0,

NADLEFD=4,TXMLEFD=O.O0,

NADTEFD_I,TXMTEFD=O.O0,

NALPHA=I6,TALPHA=-8.0,-6.O,-4.0,-2.0,O.O,2.0,4.0,6.O,8.0,10.O,12.0,14.0,

16.0,18.O,20.0,22.0, $

SUPERSONIC TRANSPORT AST 200 - COE, TP 2176 - DLN=40,DTN=IO

$1NPTI TBLEFD=O.O0,O.O0,15.51,15.51,15.51,22.76,22.76, $

(f) Advanced arrow-wing supersonic transport

SUPERSONIC TRANSPORT AST 210 - SCOTT, CR 172531 - DLN=30,DTNz20

$1NPTI XM_.21, RN_4.I,JBYMAX-IO,ELARI2.0,1VOROPzI,IPRSLDA_I,

SREF-1338.2,CBARs35.2,XMC-69.I,XMAX-97.94,

NLEY-4,TBLEYsO.O00,1.950,18.O0,24.80,

TBLEX-O.O00,27.24,79.81,91.59,

NTEY-4,TBTEY-O.O00,8.280,13.61,24.80,

TBTEX=86.77,86.59,88.05,97.94,

NYC=IO,TBYC-O.O0,2.40,3.72,4.96,8.28,12.34,15.00,18.00,22.32,24.80,

NPCTC=IO,

TBPCTC=O.O00,2.500,5.000,10.O0,20.O0,30.O0,40.O0,60.O0,80.O0,100.O,

TZORDC-O.O00,O.OOO,O.OOO,O.OO0,O.OO0,-.3OO,-I.42,-4.OT,-6.18,-7.43,16*O.O,

O.O00,-.023,-.082,-.296,-.893,-1.56,-2.22,-3.39,-4.38,-5.17,16"0.0,

0.000,.0020,-.027,-.175,-.605,-i.09,-1.58,-2.49,-3.32,-4.05,16"0.0,

0.OO0,.0230,.O140,-.069,-.362,-.707,-1.06,-1.77,-2.46,-3.14,16"0.0,

0.O00,.0430,.O770,.0900,.0350,-.O71,-.210,-.563,-1.01,-1.51,16"O.O,

0.000,.O340,.0670,.1170,.1490,.1290,.0790,-.091,-.336,-.626,16"0.0,

0.000,.O250,.0500,.0940,.1230,.1170,.O880,-.O23,-.179,-.359,16"0.0,

0.000,.0050,.0090,.0190,.0210,.0110,-.010,-.065,-.129,-.188,16_0.0,

0.O00,-.O09,-.018,-.037,-.062,-.079,-.094,-.114,-.118,-.110,16"0.0,

0.000,-.005,-.O10,-.018,-.037,-.O55,-.066,-.078,-.079,-.078,16"0.0,

NYRz9)

TBYR -0.0000,I.95OO,4.9600,8.2800,12.340,15.000,18.000,18.000,24.800,

TBTOC-O.O000,.O3030,.02770,.O2570,.02570,.02770,.03000,.02000,.02000,

TBROC=O.O000,.O0064,.O0054,.O0046,.O0046,.00054,.O0063,.O0030,.O0030,

TBETA-.40000,.40000,.40000,.40000,.40000,.40000,.40000,.50000,.50000,

NLEFY'6,TBLEFY'O.O0,1.85,1.95,15.5,18.0,24.8,

TBLEFC-O.O0,O.O0,6.36,9.28,4.48,1.92,

TBLEFD-O.O0,O.OO,9.03,9.03,18.9,18.9,

NTEFY=IO,TBTEFY-O.O0,2.30,2.40,7.07,7.17,9.44,9.54,12.3,12.4,24.8,

TBTEFC-O.O0,O.O0,3.75,3.60,O.OO,O.OO,3.92,4.70,O.OO,O.O0,

TBTEFD-O.O0,O.O0,20.O,20.O,O.O0,O.O0,20.O,20.O,O.O0,O.O0,

NADLEFD-I,TKMLEFD-O.O0,

NADTEFD_I,TXMTEFD-O.O0,

NALPHA=I6,TALPHA=-8.0,-6.O,-4.0,-2.0,O.O,2.0,4.0,6.0,8.O,IO.O,12.O,14.0,

16.0,18.O,20.O,22.O, $

SUPERSONIC TRANSPORT AST 210 - SCOTT, CR 172531 - DLNz40,DTN=20

$1NPTI TBLEFD-O.O0,O.O0,13.O,13.O,26.42,26.42, $
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Table I. Concluded

(g) 60°-swept trapezoidal-wing fighter

SUPERSONIC CRUISE FIGHTER - RIEBE, TP 2642 - FLAP A DLS=I5-20,DTS=I5-12

$1NPTI XMzO.50,RN_2.9,JBYMAX=8,ELAR=4.00,IVOROP-I,IPRSLDA.I,

SREFzI49.7,CBAR_9.78,XMC=20,64,XMAX_33:48,

CLDES-.73,

NLEY=7,TBLEY-O.OO0,O.470,.8700,1.160,1.190,I.200,9.200,

TBLEX=O.O00,2.O00,4.000,6.000,6.540,14.44,28.29,

NTEY'5,TBTEY=O.O00,I.190,1.200,5.200,9.200,

TBTEX=33.48,33.48,27.56,28.16,30.29,

NYC_tO,TBYC'O.OO,I.20,2.20,3.20,4.20,5.20,6.20,7.20,8.20,9.20,

NPCTC=IO,

TBPCTC'O.OO0,2.481,4.975,9.965,19.95,29.95,39.95,59.96,79.98,100.O,

TZORDC=O.OO0,O.OO0,O.OOO,O.OO0,O.OOO,O.OO0,O.O00,O.OO0,O.O00,O.OO0,16*O.O,

O-O00,-.012,-.023,-.039,-.061,-.O81,-.100,-.116,-.080,-.019,16"0.0,

0.000,.0030,.0020,.0010,-.OO3,-.O07,-.007,.O020,.0230,.0460,16"0.O,

O.000,.0090,.0150,.0260,oO410,.0430,.O460,.O630,.O850,.I090,16"0.O,

0.000,.O090,.0160,.O290,.0490,.O560,.O610,.0830,.1060,.1310,16"0.O,

0.000,.O060,.O120,.0230,.0390,.0520,.O650,.O890,.I120,.1370,16"O.O,

O-000,.0060,oOl00,.02OO,.O350,.0490,.0610,.O850,.i070,.1320,16"O.O,

O.000,.0050,.O090,.0170,.03OO,.0420,.0530,.0740,.O950,.i150,16"0.O,

O.000,.0030,.0060,.0120,.0240,.0330,.O430,.0600,.O770,.0950,16"0.0,

O.OOO,-O010,oOO30,.0060,.0140,.0240,.0330,.0520,.O720,.O910,16"0.0,

NYR=3, TBYR=0.O00,1.200,9.200,

TBTOC-O.OO0,O.O40,O.040,

TBROC_.O000,.OOI2,.O012,

TBETA-0.400,O.400,O.400,

NLEFY=6,TBLEFY=O.O00,I.190,I.200,5.190,5.200,9.200,

TBLEFC_O.O00,O.O00,2.320,1.360,1.360,O.600,

TBLEFD_O.OOO,O.OO0,15.O0,15.00,20.O0,20.OO,

NTEFY=6,TBTEFY=O.OOO,I.190,1.200,5.190,5.200,9.200,

TBTEFCsO.O00,O.O00,1.360,1.360,1.360,O.4OO,

TBTEFD=O.OO0,O.OO0,15.00,15.OO,12.00,12.00,

NADLEFD-[,TXMLEFD-O.O0,

NADTEFD-I,TXMTEFDsO.00,

NALPHA=I4,TALPHA=-6.,-4.,-2.,O.,2.,4°,6.,8.,10o,12.,[4.,16.,

18.,20., $
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Table II. Sample Input Data for WINGDES2 Code

(a) Advanced arrow-wing, supersonic-transport; whole-wing design

SUPERSONIC TRANSPORT AST 210 - SCOTT, CR 172531 - WHOLE WING DESIGN

$1NPTI XM=.21, RN=4.I,JBYMAX=8,ELAR=2.0,1VOROP=I, IPRSLD=I,

CLUES=.60,

SREF=I338.2,CBAR=35.2,XMC=69.I,XM-AX=97.94,

NLEY=4,TBLEY=O.O00,1.950,18.00,24.80,

TBLEX=O.O00,27.24,79.81,91.59,

NTEY=4,TBTEY=O.O00,8.280,13.61,24.80,

TBTEX=86.77,86.59,88.05,97.94,

NYR=9,

TBYR =O.OOO0,1.9500,4.9600,8.2800,12.340,15.000,18.O00,18.000,24-800,

TBTOC=O.OO00,.03030,.O2770,.02570,.02570,.02770,.03000,.02000,.02000,

TBROC=O.O000,.O0064,.O0054,.O0046,.O0046,.O0054,.O0063,.O0030,-00030,

TBETA=.40000,.40000,.40000,.40000,.40000,.40000,.40000,.50000,.50000,

NLEC_4,TBLECY=O.O00,1.950,18.00,24.80,

TBLEC=86.76,59.53,12.12,6.350,

NEWDES=I,

NALPHA=I6,TALPHA=-8.0,-6.0,-4.0,-2.0,O.O,2.0,4.0,6.0,8.0,10.O,12.0,14"O,

16.0,18.0,20.0,22.0, $

(b) Advanced arrow-wing, supersonic-transport; restricted-area wing design

SUPERSONIC TRANSPORT AST 210 - SCOTT, CR 172531 - RESTRICTED DESIGN

$1NPTI XM_.21, RN=4.I,JBYMAX=8,ELAR=2.0,1VOROP=I, IPRSLD=I,

CLDES=.60,CMDES=-.05,

IFLPDES=I,

SREF=I338.2,CBAR=35.2,XMC_69.I,XMAX=97.94,

NLEY=4,TBLEY=O.OO0,1.950,18.00,24.80,

TBLEX=O.000,27.24,79.81,91.59,

NTEY=4,TBTEY=O.O00,8.280,13.61,24.80,

TBTEEm86.77,86.59,88.05,97.94,

NYC=IO,TBYC=O.O0,2.40,3.72,4.96,8.28,12.34,15"O0,18"O0, 22"32,24"80'

NPCTC=IO,

TBPCTC=O.O00,2.500,5.000,10.O0,20.O0,30.O0,40.O0,60.O0,80"O0,100"O,

TZORDC=O.O00,O.OO0,O.O00,O.O00,O.OO0,-.3OO,-I.42,-4.07,-6"IS,-7"43,16*O'O,

O.000 -.023,-.082,-.296,-.893,-1.56,-2"22,-3"39, -4"38,-5"17'16_O'0'

O.0OO .O020,-.027,-.175,-.605,-i.09,-1.58,-2.49,-3.32,-4.O5,16"0.0,

O.000 .0230,.O140,-.069,--362,-.707,-1-06,-1"77,-2"46, -3"14,16.0"0'

0.000 .0430,.0770,.0900,.0350,-.071,-.210,-.563,-1.01,-1.51,16"O-O,

0.O00.0340,.0670,.1170,.1490,.1290,.0790,-.O91,--336,-'626,16"0"0,

0.000.0250,.0500,.0940,.1230,.1170,.0880,-.023,-.179,-'359,16"O"0,

0.000 .0050,.0090,.0190,.0210,.0110,-.010,-.065,-.129,-.188,16"0"0,

0.000 -.009 -.018,-.O37,-.062,-.079,-.094,-.114,-.118,-.110,16"0"0,

0.000 -.005,-.O10,-.018,-.037,-.055,-.066,-.078,-.079,-.078,16"0.0,

NYR=9,

TBYR =0.0000,1.9500,4.9600,8.2800,12.340,15-000,18-000,18.000,24"800,

TBTOC=O.O000,.03030,.02770,.O2570,.02570,.O2770,'03000,'02OO0,'O2000'

TBROC=O.OOOO,.O0064,.O0054,.OOO46,.O0046,.OO054,'O0063,'O0030,'O0030'

TBETA=.40000,.40OO0,.40000,.4OO00,.40000,.40000,'40000,'50000,'50000'

NLEC=6,TBLECY=O.O0,1.85,1.95,15.5,18.0,24.8,

TBLEC=O.O0,O.O0,6.36,9.27,4-48,1.92,

NGCS=O,

NTES=2,

NTEC=IO,TBTECY=0.00,2.30,2.40,7.07,7.17,9.44,9"54,12"3,12"4, 24"8'

TBTEC=O.O0,O.O0,3.75,3.60,O.00,O.O0,3.92,4.70,O'O0,0"O0,

NEWDES=I,

NALPHA=I6,TALPHA=-8.0,-6.0,-4.0,-2.O,O.O,2"0,4"0,6"0,8"0,10"O,12"O'I4"O'

16.O,18.0,20.0,22.O, $
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Table II. Concluded

(c) 60°-swept trapezoidal-wing fighter; whole-wing design

SUPERSONIC CRUISE FIGHTER - RIEBE, TP 2642 - WHOLE WING DESIGN

$1NPTI XM=O.50,RN=2.9,JBYMAX=8,ELAR=2.00,IVOROP=I, IPRSLD=I,

CLDES=0.73,

NEWDES=I,

SREF=I49.7,CBAR=9.7_,XMCs20.64,XMAX=33.4B,

NLEY=7,TBLEY=O.O00,O.470,.8700,I.160,1.190,1.200,9.200,

TBLEX=O.OO0,2.000,4.O00,6.000,6.540,14.44,28.29,

NTEY=5,TBTEY=O.O00,1.190,1.200,5.200,9.200,

TBTEX=33.48,33.48,27.56,28.16,30.29,

NYR=3, TBYR=0.ODO,1.2OO,9.200,

TBTOC=O.O00,O.040,0.040,

TBROC=0.OO0,.O012,.OOI2,

TBETAsO.4OO,O.400,O.400,

NALPHA=I4,TALPHA=-6.,-4.,-2.,O.,2.,4.,6.,8.,IO.,12.,14., 16. ,

18.,20., $

(d) 60°-swept trapezoidal-wing fighter; restricted-area wing design
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SUPERSONIC CRUISE FIGHTER - RIEBE, TP 2642 - RESTRICTED DESIGN, FLAP A
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Figure 30. Summary of flap-design study for advanced arrow-wing supersonic transport.
M -- 0.21; R = 4.1 x 10 6.

C L = 0.6;
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Figure 31. Theoretical and experimental data for 60°-swept trapezoidal-wing fighter.
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Figure 31. Continued.
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Figure 31. Continued.
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Figure 31. Continued.
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Figure 31. Concluded.
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Figure 33. Suction-parameter variation with lift coefficient for two leading-edge flap planforms. 60°-swept

trapezoidal-wing fighter. 5L, s = 15°/20°; 57,, s = 15°//12 °.
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Figure 34. Whole-wing-design camber surface for 60°-swept trapezoidal-wing fighter.

M = 0.50; R = 2.9 x 106+
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Figure 36. Theoretical and experimental data for 60°-swept trapezoidal-wing fighter at off-design Mach
numbers.
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Figure 36. Concluded.
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Figure 37. Fitting of flap surfaces to wing-design surface.
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